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Chapter 1

Coordinates and Vectors

1.1 Polar Coordinates
Polar coordinates are useful for situations with circular symmetry in the plane.
The polar coordinates (r,φ) of a point P are given by the distance r of P
from the origin and the angle φ from the positive x-axis to P , as shown in
Figure 1.1.1.

Figure 1.1.1 The construction of the polar coordinates (r,φ) at an arbitrary
point.

Notation: When we think of the plane as a cross-section of spherical
coordinates, we will use the pair (r,φ) for polar coordinates. When we think of
the plane as a cross-section of cylindrical coordinates, we will use the pair (s,φ)
for polar coordinates. In other references, you may also see the angle called
θ instead of φ; we use φ to agree with our conventions for (cylindrical and)
spherical coordinates.

It is important to remember that the angle φ does not measure distance;
it has the wrong dimensions. Angles (in radians) are defined as the ratio of
arclength to radius on the circle, so the arclength from the positive x-axis to P
along the circle shown in the figure is rφ.

1.2 Polar and Rectangular Coordinates
Section 1.1 introduced polar coordinates from scratch, without reference to
rectangular coordinates. How do these coordinate systems compare?

1
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Figure 1.2.1 redraws Figure 1.1.1 to show the values of the rectangular
coordinates (x, y) as well as the values of the polar coordinates (r, φ) for an
arbitrary point P . Using the circle definition of the trigonometric functions, we
see immediately that

x = r cosφ, (1.2.1)
y = r sinφ. (1.2.2)

These expressions can of course be inverted, yielding

r =
√
x2 + y2, (1.2.3)

φ = tan−1
(y
x

)
, (1.2.4)

which can be expressed more simply as

r2 = x2 + y2, (1.2.5)

tanφ = y

x
. (1.2.6)

Figure 1.2.1 The construction of the polar coordinates (r,φ) at an arbitrary
point P , showing their relationship to rectangular coordinates (x,y).

1.3 Curvilinear Coordinates
Choosing an appropriate coordinate system for a given problem is an important
skill. The most frequently used coordinate system is rectangular coordinates,
also known as Cartesian coordinates, after René Déscartes. One of the great
advantages of rectangular coordinates is that they can be used in any number
of dimensions.

In three dimensions, holding any one coordinate fixed yields a surface, which
is a plane in the case of rectangular coordinates. A coordinate system can
be thought of as a collection of such “constant coordinate” surfaces, and the
coordinates of a given point are just the values of those constants on all the
surfaces which intersect at the point. These planes are illustrated for rectangular
coordinates in Figure 1.3.1.



CHAPTER 1. COORDINATES AND VECTORS 3

Figure 1.3.1 The coordinate planes in rectangular coordinates. On each of
these planes, one of the rectangular coordinates is constant.

It is often useful, however, to use a coordinate system which shares the
symmetry of a given problem — round problems should be done in round
coordinates. The two standard “round” coordinate systems are cylindrical
coordinates (s,φ,z), shown in Figure 1.3.2, and spherical coordinates (r,θ,φ),
shown in Figure 1.3.3. Either of these coordinate systems can also be restricted
to the x, y-plane, where they both reduce to polar coordinates. You should be
aware that the standard physics conventions for spherical coordinates, used here,
differ from the standard (American) math conventions; the roles of θ and φ are
reversed. We also reserve r for the radial coordinate r in spherical coordinates,
using s instead in cylindrical (and occasionally also in polar) coordinates.
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Figure 1.3.2 The geometric definition of cylindrical coordinates.
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Figure 1.3.3 The geometric definition of spherical coordinates.

Sensemaking 1.3.1 Coordinate planes in curvilinear coordinates.
Find the “constant coordinate” surfaces (analogous to those in Figure 1.3.4) for
cylindrical and spherical coordinates.
Solution.
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Figure 1.3.4 The coordinate planes in cylindrical and spherical coordinates.

Notation. Both of these coordinate systems reduce to polar coordinates in
the x, y-plane, where z = 0 and θ = π/2 if, in the cylindrical case you relabel
s to the more standard r. In both cases, φ rather than θ is the label for the
angle around the z-axis. Make sure you know which geometric angles θ and φ
represent, rather than just memorizing their names. Whether or not you adopt
the conventions used here, you should be aware that many different labels are
in common use for both of these angles. In particular, you will often see the
roles of θ and φ interchanged, particularly in mathematics texts.

Another common convention for curvilinear coordinates is to use ρ for the
spherical coordinate r. We will not use ρ for the radial coordinate in spherical
coordinates because we want to reserve it to represent charge or mass density.
Some sources use r for both the axial distance in cylindrical coordinates and
the radial distance in spherical coordinates.
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1.4 Change of Coordinates
The whole point of using curvilinear coordinates is that they may be better
adapted to the symmetries of a given problem. Ideally, this means that the
entire problem should be done in curvilinear coordinates, without converting
between coordinate systems (although this is not always possible). From this
point of view, while it is certainly worth learning how to convert between, say,
rectangular and polar coordinates, it is also worth learning how to avoid doing
so as much as possible.

For completeness, the explicit transformations between these coordinate
systems are given below. You should be able to use Figure 1.3.2, Figure 1.3.3,
and trigonometry to verify these results. We reiterate that the conventions used
here are “physicists’ conventions”, used by almost everyone except American
mathematicians [1].

Cylindrical Coordinates:

x = s cosφ s2 = x2 + y2

y = s sinφ tanφ = y/x

z = z z = z

Spherical Coordinates:

x = r sin θ cosφ r2 = x2 + y2 + z2

y = r sin θ sinφ tan θ =
√
x2 + y2/z (1.4.1)

z = r cos θ tanφ = y/x

1.5 Vectors
We begin with the intuitive idea that a vector ~w is an arrow in space. Examples
of vectors include the displacement from one point to another and your velocity
at a point as you are moving along some path. An explicit example is shown in
Figure 1.5.1.

Figure 1.5.1 A vector ~w.
What operations can we do with vectors? Two vectors can be added, using

the parallelogram rule, as shown in Figure 1.5.2.
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Figure 1.5.2 Adding two vectors using the parallelogram rule.
Vectors in space are anchored with their tails at a point in space, as shown

by the dot in the figures. As shown in Figure 1.5.2, one adds vectors that are
anchored at the same point, and the result is another vector anchored at that
point.
You may have learned to add vectors by placing the tail of the second vector at
the head of the first. Although that method does work in simple (flat) geometric
contexts, it will fail in curved spaces (such as in general relativity).

Once we know how to add vectors, we can also rescale them. For instance,
2~w = ~w + ~w. This operation can be generalized to rescale ~w by any real
number, a process known as scalar multiplication.

Defining −~w to point in the opposite direction from ~w, we have

~w − ~w = ~w + (−~w) = ~0 (1.5.1)

which could also have been taken as the definition of −~w. Thus, we can also
subtract vectors, as shown in Figure 1.5.3.

Figure 1.5.3 Subtracting two vectors using the parallelogram rule.

1.6 Bases
Intuitively, vectors in space can point up or down, right or left, and forward or
backward. “Space” in this case refers to our ordinary notion of the Euclidean
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geometry which we experience in our daily lives. Such vectors are said to be
three dimensional. As a special case, some vectors are restricted to a plane,
and are said to be two dimensional.

A two-dimensional vector, such as the one shown in Figure 1.5.1, can be
expressed in terms of how much it goes “to the right” in the direction of ~a and
how much it goes “up” in the direction of ~b, as shown in Figure 1.6.1. This
process is called expanding the vector in terms of the basis vectors ~a and ~b.

Figure 1.6.1 A two-dimensional vector ~w, expanded in terms of a basis {~a,~b}.
There is no requirement that the basis vectors ~a and ~b used in the expansion

be “perpendicular”, nor that they have the same “magnitude”. In fact, we
do not yet know what those words mean (see Section 1.7 and Section 1.8)!
Nonetheless, we can conclude from Figure 1.6.1 that ~w = 2~a+~b.

In two dimensions, it takes two basis vectors in order to expand any vector.
Any two linearly-independent (that is, non-parallel) vectors in the plane can be
used to expand all vectors in the plane. In three dimensions, it takes a third
basis vector, that is not in the plane defined by the other two, to expand any
vector.

1.7 Unit Vectors
Displacement vectors have a length, which you can measure with a ruler. The
corresponding notion for velocity vectors is the speed at which you are going.
In either case, you can measure the angle between two such vectors using a
protractor.

We use the terminology vectors in space, or vectors in the plane to refer
to such geometric vectors, which have both a magnitude (in appropropriate
units) and a direction. We will assume for now that all vectors are of this
type, that is, that they have both direction and magnitude. 1

The magnitude of ~w is denoted by |~w|, also written ||~w|| or sometimes just
as w, without an arrow on top. The magnitude of ~w is often casually called the
“length” of ~w, but that usage is only correct if ~w has dimensions of length. The
displacement between two points does indeed have a length, but to talk about
your speed as being the “length” of your velocity vector is confusing at best.

For example, suppose you are moving at 5 miles per hour (mph) in a roughly
northeasterly direction. Your velocity ~w could be represented as shown in
Figure 1.5.1. The magnitude of ~w would be 5 mph, and its direction could be
specified as an angle from due north.

A unit vector is a vector whose magnitude is 1. Given any vector ~w, we
get a unit vector that points in the same direction as ~w by dividing ~w by its
magnitude |~w|, that is, ~w

|~w| is a unit vector.
Unit vectors are dimensionless!

1Not all vectors have magnitudes!
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If you divide your velocity by your speed, both measured in miles per hour,
the magnitude of the result is just plain 1, not “1 mph”. What information is
left? The direction you are going. We therefore define the direction of a vector
~w to be the unit vector in the same direction, which is just ~w

|~w| .
As is customary in many branches of science, we will denote unit vectors

with a hat, rather than an arrow. We will write the unit vectors in the x, y, and
z directions as x̂, ŷ, and ẑ, respectively. There are other common notations for
these vectors. For instance, you may see x̂ written instead as any of ~imath,
ı̂, ~ax, or ~ex. You may also see the notation w and ŵ for the magnitude and
direction, respectively, of a given vector ~w, so that w = |~w| and ŵ = ~w

|~w| .
Any vector ~w in three dimensions can of course be expressed in terms of

its components in the x, y, and z directions. For instance, we might have
~w = 2 x̂+ 3 ŷ + 4 ẑ. But it is important to think of vectors as arrows in space,
rather than as a list of three components. While these points of view are
equivalent, the former is more geometric. One of the goals of this book is to
develop this geometric intuition so that it can be used in applications. It is in
part for this reason that, unlike many texts, we almost always include the basis
vectors {x̂, ŷ, ẑ} when referring to the (Cartesian) components of a vector; we
avoid writing “~w = 〈2, 3, 4〉”. Thus, for an arbitrary vector ~w with unknown
(Cartesian) components, we write

~w = wx x̂+ wy ŷ + wz ẑ (1.7.1)

Notation. Note the use of subscripts to denote the components; these sub-
scripts do not denote partial differentiation, and in fact for this reason we never
use subscripts to denote derivatives.
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Figure 1.7.1 The vector ~u, showing its (Cartesian) components.
For example, the components of the vector ~u above in Cartesian coordinates

are shown in Figure 1.7.1. If ~u refers to your velocity, this example corresponds
to your moving at 3 mph to the east and 4 mph to the north, for an overall
velocity of 5 mph in the direction

~u

|~u|
= 3

5 x̂+ 4
5 ŷ

(which could also have been specified as a compass direction).

1.8 The Dot Product
Before you read this section, you should take a few minutes to jot down every-
thing you know about the dot product. Many students feel that if they know one
representation for a concept, that is sufficient. As you will discover throughout
this book, the professional scientist’s ability to solve problems often comes from
the ability to play off several different representations against each other.

The geometric definition of the dot product is given by:

~v · ~w = |~v||~w| cos θ (1.8.1)

where θ is the angle between ~v and ~w. Now we notice something interesting:
If ~v is the vector along the hypotenuse of the triangle in Figure 1.8.1, then
|~v| cos θ is the projection of ~v onto the direction of ~w, the other vector. Similarly,
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|~w| cos θ is the projection of ~w onto the direction ~v, so the dot product is a
symmetrized version of projection.

Figure 1.8.1 A projection can be found using the geometric definition of the
dot product.

More precisely, in Figure 1.8.1, the length of the heavy line segment repre-
sents the component of ~v in the ~w direction. If we regard this component as
the definition of the dot product of ~v with the unit vector ~w

|~w| , then multiplying
through by |~w| and using some triangle trigonometry leads immediately to
Equation (1.8.1) for the dot product of ~v and ~w. (Projecting ~w onto ~v instead
leads to the same result.)

Thus, the dot product is a rescaled projection. It is this rescaling that makes
it symmetric; it doesn’t matter which vector is which.

Since the angle between a vector and itself is zero, an immediate consequence
of this formula is that the dot product of a vector with itself gives the square
of its magnitude, that is

~v · ~v = |~v|2. (1.8.2)

In particular, taking the “square” of any unit vector yields 1, for example

x̂ · x̂ = 1. (1.8.3)

Furthermore, since cos π2 = 0, it also follows immediately from the geometric
definition that two (nonzero) vectors are orthogonal if and only if their dot
product vanishes, that is 1

~v ⊥ ~w ⇐⇒ ~v · ~w = 0. (1.8.4)

Because the dot product is distributive (i.e. you can "FOIL" the dot product
over a sum of vectors), 2 the geometric formula Equation (1.8.1) can be used
to express the dot product in terms of vector components. For example, if
~v = vx x̂+ vy ŷ and ~w = wx x̂+ wy ŷ, then

~v · ~w = (vx x̂+ vy ŷ) · (wx x̂+ wy ŷ)
= vxwx x̂ · x̂+ vywy ŷ · ŷ + vxwy x̂ · ŷ + vywx ŷ · x̂
= vxwx + vywy (1.8.5)

1Since the zero vector ~0 also satisfies this condition, it is, by definition, orthogonal to
every other vector!

2There is some fine print here: we must show that the dot product is, in fact, linear in its
arguments, so that it distributes over addition as claimed. This property can be established
geometrically; see our online article3.

http://mathdl.maa.org/mathDL/4/?pa=content&sa=viewDocument&nodeId=1156
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which is often given as the algebraic definition of the dot product in rectangular
coordinates in two dimensions. A similar formula holds in three dimensions.

A special case is the dot product of a vector with itself, which reduces to the
Pythagorean theorem when written out in terms of components, for example

~v · ~v = |~v|2 = v2
x + v2

y. (1.8.6)

In the above computation we simply “multiplied out” the original expression
in terms of components, then used the multiplication table

x̂ · x̂ = 1 = ŷ · ŷ,
x̂ · ŷ = 0 = ŷ · x̂.

Using the multiplication table of basis vectors under the dot product in this
way is a useful strategy which you are encouraged to practice.

Returning to our earlier example of motion at 3 mph to the east and 4 mph
to the north, we have ~u = 3 x̂+ 4 ŷ, so that

|~u|2 = ~u · ~u = 32 + 42 = 52

and the overall speed is |~u| = 5 mph as expected.

Activity 1.8.1 Combining the algebraic and geometric definitions of
the dot product. Find the angle between a diagonal of a cube and one of its
edges
Solution. Consider the unit cube in the first octant. The vertices that we
care about are at (0, 0, 0), (1, 0, 0), (1, 1, 1). The length of the vector from the
origin along the diagonal of the cube is

√
3 and the length of the vector along

the edge is 1. By setting the dot product of these two vectors, calculated using
the geometric formula Equation (1.8.1) and also the algebraic formula, equal to
each other, we can solve for the cosine of the angle that we want.

x̂ · (x̂+ ŷ + ẑ) = |x̂| |(x̂+ ŷ + ẑ)| cos γ
1 =
√

3 cos γ

cos γ = 1√
3

Since we know from the diagram that the angle we are looking for is less than
π
2 , choose the angle for the arccosine in the first quadrant.

1.9 Visualizing the Dot Product
The figure below shows two computations of the dot product of the given vectors,
using the geometric formula (top) and the algebraic formula (bottom). The
magnitude of each vector and the angle between them are shown for the first
computation, whereas the second shows the horizontal and vertical components.
The components are color-coded; the green bars in the algebraic representation
show the products of corresponding components.
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Figure 1.9.1 Two representations of the dot product. Change the vectors by
dragging their tips.

1.10 The Law of Cosines

Figure 1.10.1 The Law of Cosines is just the definition of the dot product.
The definition of the dot product can be used to prove several familiar

formulas. For example, consider Figure 1.10.1, in which ~C = ~B − ~A. Then

~C · ~C = ( ~B − ~A) · ( ~B − ~A)

= ~A · ~A+ ~B · ~B − 2 ~A · ~B

or equivalently
| ~C|2 = | ~A|2 + | ~B|2 − 2| ~A|| ~B| cos θ (1.10.1)

which is just the Law of Cosines.
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1.11 Addition Formulas

Figure 1.11.1 The derivation of the trigonometric addition formulas using the
definition of the dot product.

The definition of the dot product was used in Section 1.10 to provide a
straightforward derivation of the Law of Cosines. A similar argument can be
used to derive the addition formulas for trigonometric functions, starting with
cosine.

Consider the unit vectors ~u and ~v, shown on the unit circle in Figure 1.11.1.
Their components are given by the coordinates of their endpoints on the unit
circle, so elementary circle trigonometry implies that

~u = cosα x̂+ sinα ŷ, (1.11.1)
~v = cosβ ŷ + sin β ŷ. (1.11.2)

Computing ~u · ~v algebraically, we obtain

~u · ~v = cosα cosβ + sinα sin β. (1.11.3)

On the other hand, since the angle θ between ~u and ~v is clearly β − α, and
since ~u and ~v are unit vectors, the geometric formula for the dot product yields

~u · ~v = |~u| |~v| cos θ = cos(α− β). (1.11.4)

Equating these two expressions for the dot product yields

cos(α− β) = cosα cosβ − sinα sin β (1.11.5)

which is the addition formula for cosine.
Addition formulas for the remaining trigonometric functions can be found

as usual, using relations such as sin θ = cos(π2 − θ) and tan θ = sin θ
cos θ .

1.12 Orthonormal Basis Vectors
In (1.7.1), we expressed an arbitrary vector ~w in three dimensions in terms
of the rectangular basis {x̂, ŷ, ẑ}. We have adopted the physics convention of
writing unit vectors (i.e. vectors with magnitude one) with hats, rather than
with arrows. You may find this to be a useful mnemonic.
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An older, but still popular, convention is to call these basis vectors {ı̂, ̂, k̂},
respectively. This convention is a historical hangover from attempts to describe
electrodynamics with quaternions in the late 1800’s!

When using curvilinear coordinates (see Section 1.3) it is often useful to
expand the vector in terms of unit vectors associated with the curvilinear
coordinates instead of the rectangular basis vectors above. For example, just
as x̂ points in the direction in which x increases, r̂ is defined to be the unit
vector pointing in the direction of increasing r (with the other coordinates held
fixed). 1

In general, a basis vector of the form ̂coordinate is the unit vector that
points in the direction in which coordinate is changing. However, unlike the
rectangular basis vectors, these vector fields vary from point to point.

Activity 1.12.1 Curvilinear Basis Vectors. Imagine that the origin of
coordinates is behind you in the corner of the room you are sitting in, on
the floor, on the left-hand side. Think of your right shoulder as a point in
space. You should use your right arm to represent, successively, each of the
basis vectors x̂, ŷ, and ẑ in rectangular coordinates, ŝ, φ̂, and ẑ in cylindrical
coordinates and r̂, θ̂, and φ̂ in spherical coordinates.
Hint.

1In some of our past materials, we have used a convention in which r and r̂ refer to
geometrically different quantities in cylindrical than in spherical coordinates. If it is not
obvious from the context (it usually is), care must be taken to specify in which coordinate
system one is working.
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Figure 1.12.1 The definition of cylindrical and spherical coordinates, showing
the associated basis vectors.
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In this activity, you should have learned the following things.
1. Figure 1.12.1 shows the directions that you should have pointed if you

were standing at a particular position in the room. Make sure that the
directions in which you pointed agree with the directions shown in the
figure. In particular, θ̂ should point generally downward (for z > 0) since
θ is measured from the positive z-axis.

2. The basis vectors are vectors, that is, they are straight arrows in space,
even when they correspond to coordinates that are angles. Your arm
should therefore have been straight, no matter which basis vector you
were representing.

3. Although the basis vectors that correspond to rectangular coordinates
x, y, and z are constants, and point in the same direction at each point
in space, most of the basis vectors that correspond to cylindrical and
spherical coordinates point in different directions at different points in
space. Figure 1.12.2 shows the construction of the polar (or cylindrical)
basis vectors r̂ and φ̂ at a particular point in a way that details how the
direction of these vectors depends on the coordinate φ of the point.

4. The basis vectors adapted to a single coordinate form a simple example
of the geometrical notion of a vector field, that is, a vector at every point
in space, see Section 1.20. As an example, Figure 1.20.1 shows these basis
vector fields in polar coordinates.

Figure 1.12.2 The construction of the polar basis {r̂, φ̂} at a specific point in
the plane.
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1.13 Polar basis vectors
Curvilinear basis vectors are vector fields, that is, they depend on the point
where they are located. So the relationship between two such bases also depends
on location.
Activity 1.13.1 At the point P shown below, first draw the rectangular basis
vectors x̂ and ŷ, then draw the polar basis vectors ŝ and φ̂. Finally, use your
drawing to work out the relationship between these basis vectors. Make sure
that your formula works for every quadrant. Note: You can move the point P
in the figures below.

Figure 1.13.1 Polar Coordinates.

Hint.

Figure 1.13.2 Draw the polar basis vectors at the point P .

1.14 Orthonormality of Basis Vectors
In this book we will only work with orthonormal coordinates, such as rectangular,
cylindrical, or spherical coordinates. Each such coordinate system is called
orthogonal because the basis vectors adapted to the three coordinates point in
mutually orthogonal directions, i.e. the basis vectors adapted to a particular
coordinate system are perpendicular to each other at every point. In particular,

ŝ · φ̂ = φ̂ · ẑ = ẑ · ŝ = 0 (cylindrical),
r̂ · θ̂ = θ̂ · φ̂ = φ̂ · r̂ = 0 (spherical).

Figure 1.12.2 shows this orthogonality in the case of polar basis vectors.
We can also choose the basis vectors to be normalized, i.e. they are unit

vectors:

ŝ · ŝ = φ̂ · φ̂ = ẑ · ẑ = 1 (cylindrical),
r̂ · r̂ = θ̂ · θ̂ = φ̂ · φ̂ = 1 (spherical).
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A basis with both of the orthogonal property and the normalization property
is called orthonormal.

Arbitrary vectors can be expanded in terms of a basis; this is why they are
called basis vectors to begin with. The expansion of an arbitrary vector ~v in
terms of its components in the three most common orthonormal coordinate
systems is given by:

~v = vx x̂+ vy ŷ + vz ẑ (rectangular),
= vs ŝ+ vφ φ̂+ vz ẑ (cylindrical),
= vr r̂ + vθ θ̂ + vφ φ̂ (spherical).

It is straightforward to find the components of an arbitrary vector field ~v in
terms of an orthonormal basis. Since the vectors in an orthonormal basis are
mutually orthogonal, it is just a matter of using the dot product to figure out
how much of ~v points in each of those directions.

Activity 1.14.1 Finding Coefficients. Find the φ̂-component of the vector
~v.
Solution. Since the basis is orthonormal, it is straightforward to compute
the components algebraically. For example,

~v = vs ŝ+ vφ φ̂+ vz ẑ, (1.14.1)

φ̂ · ~v = φ̂ ·
(
vs ŝ+ vφ φ̂+ vz ẑ

)
=
(
φ̂ · vs ŝ+ φ̂ · vφ φ̂+ φ̂ · vz ẑ

)
= (0 + vφ 1 + 0) , (1.14.2)

⇒ vφ = φ̂ · ~v, (1.14.3)

with similar expressions holding for the other components.
Of course, this calculation is overkill if you already have the vector ~v

visibly decomposed as in Equation (1.14.1). In that case, you should just
read off the coefficient of φ̂. This method becomes useful if the expansion in
Equation (1.14.1) is algebraically hidden in some way.

You can also find coefficients geometrically:

vφ = φ̂ · ~v

= |φ̂| |~v| cosα

where α is the angle between ~v and φ̂ and |φ̂| = 1.
In situations with high symmetry, many physical quantities may be simpler

to understand or interpret if they are written in terms of curvilinear basis vectors.
However, you must be very careful anytime you are adding or subtracting (or
integrating, which is just a continuous form of adding) vectors expressed in
curvilinear basis vectors.
Warning 1.14.1 Never add or integrate expressions involving curvi-
linear basis vectors at more than one point. When using basis vectors
adapted to curvilinear coordinates in sums and differences (including integrals),
it is essential to remember that these basis vectors are not constant. For ex-
ample, if you try to add two vectors that are expanded in terms of the basis
vectors appropriate to two different points, e.g. {r̂1, θ̂1, φ̂1} and {r̂2, θ̂2, φ̂2},
you cannot simply add the components:

~v1 + ~w2 = (vrr̂1 + vθθ̂1 + vφφ̂1) + (wrr̂2 + wθθ̂2 + wφφ̂2)
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6= (vr + wr)r̂ + (vθ + wθ)θ̂ + (vφ + wφ)φ̂

The last line is not correct because {r̂1, θ̂1, φ̂1} 6= {r̂2, θ̂2, φ̂2}, so that the
coefficients of the basis vectors cannot be factored out. The only way out of
this dilemma is to rewrite the curvilinear basis vectors in terms of rectangular
basis vectors. Since rectangular basis vectors do not change from point to point,
they can be factored out of the relevant expressions.

Similarly, later in this text, when we discuss taking various derivatives of
vector fields, we will need to show how to take the derivatives of these curvilinear
basis vectors.

1.15 The Position Vector
The position vector ~r is the displacement vector that points from the origin
to a given point P , as shown in Figure 1.15.1. It is important to note that the
position vector depends not only on the given point, but also on the choice of
origin.

Figure 1.15.1 The position vector corresponding to the point P .
As with any vector, we can express the position vector in terms of a basis.

In rectangular coordinates, the position vector is given by

~r = rx x̂+ ry ŷ + rz ẑ

= x x̂+ y ŷ + z ẑ (1.15.1)

since the components {rx, ry, rz} of the position vector are just the rectangular
coordinates (x, y, z) of the point $P$.

1.16 The Position Vector in Curvilinear Coordi-
nates

The position vector is easier to write algebraically in rectangular coordinates
than it is to think about:

~r = x x̂+ y ŷ + z ẑ. (1.16.1)

What happens in curvilinear coordinates? Naive pattern matching with
(1.16.1) might lead you to believe that the position vector in spherical coordinates
is given by:

~r = r r̂ + θ θ̂ + φ φ̂ (incorrect). (1.16.2)

However, if you try to follow this equation as a literal set of instructions, then
the instructions say “first travel the distance r in the r̂ direction (which already
gets you to where you want to go) and then from there, travel the distance
θ (which is an angle, not a distance) in the θ̂ direction and then from there,
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travel the distance φ (which is also an angle, not a distance) in the φ̂ direction.”
These directions are clearly incorrect; we should have stopped after the first
step. In spherical coordinates, the position vector is given by:

~r = r r̂ (correct). (1.16.3)

Don’t forget that the position vector depends on the point P at which
you are looking. However, if you try to write the position vector ~r(P ) for a
particular point P in spherical coordinates, and you think of the tail of the
position vector as “attached” to the origin, then you have a problem. It is not
clear which r̂, θ̂, and φ̂ you should use. The resolution to this dilemma, of
course, is to think of the tail as “attached” to the point P and to use the r̂,
θ̂, and φ̂ at P . We can use a subscript P to denote this particular choice of
basis vectors r̂P , θ̂P , and φ̂P . If you are trying to use the position vector to
tell someone how to get to P from the origin and you try to use curvilinear
coordinate basis vectors, it turns out to be somewhat tricky. As discussed
above, the process boils down to facing in the correct direction (r̂P ), then going
the correct distance (r), so that

~r(P ) = r r̂P . (1.16.4)

If you are trying to use the position vector to tell someone how to get to P
from the origin and you try to use curvilinear coordinate basis vectors, then
they have to know where P is in order to understand your description in terms
of the basis vectors, r̂P , θ̂P , and φ̂P , at P !

You should try to use a similar process to find the position vector in
cylindrical coordinates.

1.17 The Position Vector as a Vector Field
The position vector is a unique and very peculiar beast.

Consider the electric field due to a point charge. It consists of a vector at
each point in space, and is best represented by a vector graph where the tail
of each vector is “attached” to the point in space at which the electric field is
evaluated. Such vector graphs represent vector fields, as discussed more fully
in Section 1.20.

On the other hand, the position vector ~r corresponding to a particular point
P in space points from an arbitrary but specific, fixed origin to the point P ,
i.e. its tail is at the origin. If we now let the point P vary all over space, then
the position vector becomes a vector field, which we could write as ~r(P ). There
is one vector for each point in space, just as for an ordinary vector field, but
now each vector is most naturally represented with its tail at the origin and
its head “attached” to the point in space at which the position vector field is
being evaluated. See Figure 1.17.1.
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Figure 1.17.1 The position vectors corresponding to several arbitrary points
P , with the tails of the vectors “attached” to the origin.

You certainly can represent the position vector by “moving” the tail of each
vector in the vector field to the point P and then making the vector point away
from the origin and have the magnitude of the vector be the distance of the
point P from the origin; see Figure 1.17.2. However, it may make your head
hurt to think about it this way if you continue to think of the position vector
as telling you, geometrically, how to get from the origin to the point P .

Figure 1.17.2 The same position vectors as in Figure 1.3.1, but now with the
tails of the vectors “moved” to the relevant points P .
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1.18 The Distance Formula
If you want to find the distance between two objects in the real world, you
measure the distance with a ruler (unless you are an astrophysicist and the
distances are too large or you are a particle physicist and the distances are too
small!). But, if you are a theoretician and you want to put the distance into
a formula, things are not quite so simple. First, you need information about
where the two objects are. Perhaps you know coordinates of the two points in
some rectangular coordinate system, say (x1, y1, z1) and (x2, y2, z2). Then the
three-dimensional version of the Pythagorean theorem shows that the distance
between the objects is

distance =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

=
√

(∆x)2 + (∆y)2 + (∆z)2. (1.18.1)

Sensemaking 1.18.1 The Pythagorean Theorem in 3 Dimensions. Use
the Pythagorean Theorem in 2 dimensions to derive formula (1.18.1) for the
Pythagorean Theorem in 3 dimensions.
Hint. To determine the length of the heavy red line, first project it into the
xy-plane. Use the Pythagorean theorem twice, first on the (projected) red
triangle and then on the (vertical) blue triangle in Figure 1.18.1.

Figure 1.18.1 The Pythagorean theorem can be extended to three dimensions.
But what if the theoretician wants to use a coordinate independent expression

in her formulas. How does she say where the objects are? By using the position
vectors ~r1 and ~r2. Figure 1.18.2 shows the position vectors ~r1 and ~r2 for two
objects, as well as their difference, ~r2 − ~r1. The magnitude of this latter vector
is the distance between the two objects. The magnitude property of the dot
product says that the magnitude of any vector is the square root of the dot
product of the vector with itself. Therefore, the distance between the two
objects, in coordinate independent form is:

distance = |~r2 − ~r1| =
√

(~r2 − ~r1) · (~r2 − ~r1). (1.18.2)
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Figure 1.18.2 The position vectors ~r1 and ~r2 for two objects, and their
difference, ~r2 − ~r1. The magnitude of the difference is the distance between the
two objects.

Sensemaking 1.18.2 Two Distance Formulas. Show that the two equa-
tions for the distance Equation (1.18.1) and Equation (1.18.2) are equivalent.
Hint. Plug rectangular coordinates for the position vectors into Equation (1.18.2)
to obtain Equation (1.18.1).

1.19 Scalar Fields
The electrostatic potentials, V , and the gravitational potential, Φ, are examples
of scalar fields. A scalar field is any scalar-valued physical quantity (i.e. a
number with units attached) at every point in space. It may be useful to think
of the temperature in a room, T , as your iconic example of a scalar field.

The symbol ~r represents the position vector which points from an arbitrary
fixed origin (that you get to pick once and for all at the beginning of any
problem and must use consistently thereafter) to a given point in space. We
often write the symbol that represents a scalar field as V (~r) where the position
vector (~r) not only reminds us that the scalar field may vary from point to point
in space, but also give us a coordinate independent symbol to describe the point
at which we are evaluating the field. Similarly, we write V (~r), Φ(~r), or T (~r)
for the electrostatic potential, the gravitational potential, or the temperature,
respectively. Even though the symbol ~r contains a vector sign, the name of
the scalar field (e.g. V , Φ, or T ) does not, since the value of the scalar field
at each point is a number, not a vector. Several alternative notations are
commonly used to denote the point at which the scalar field is being evaluated,
for example V (P ) (where P is intended to represent the “point” at which the
field is evaluated) or V (x, y, z) (where a coordinate system has been chosen).
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1.20 Vector Fields

A vector field, ~F , is a function whose output is a vector at each point in the
domain of the function. Each such vector should be thought of as "living"
(having its tail at) the point at which it is defined, rather than at the origin. A
vector field is often written as any of ~F (P ), ~F (~r), ~F (x, y, z), etc., that assigns a
vector to each point in the domain, designated by P , ~r, or (x, y, z), respectively.

Vector fields can be expanded with respect to any basis, so that we can
write

~F = Fx x̂+ Fy ŷ + Fz ẑ (rectangular)
= Fs ŝ+ Fφ φ̂+ Fz ẑ (cylindrical)
= Fr r̂ + Fθ θ̂ + Fφ φ̂ (spherical)

where Fx is called the component of ~F with respect to x, or simply the x-
component of ~F , and similarly for the other components. 1 More information
about the curvilinear basis vectors can be found in Section 1.12. Explicit
examples are provided by the polar basis vectors r̂ and φ̂, which are shown in
Figure 1.20.1. 2

Figure 1.20.1 The polar basis vector fields r̂ and φ̂.
You can generate your own examples by editing the Sage code below.

x,y=var(’x,y’)
p=plot_vector_field ((y,x), (x,-10,20), (y,-10,10))
show(p,aspect_ratio =1)

1.21 The Cross Product
The cross product is fundamentally a directed area. The magnitude of the cross
product is defined to be the area of the parallelogram whose sides are the two
vectors in the cross product.

1Do not confuse the physicists’ notation Fx for the x-component of a vector or vector field
with the mathematicians’ notation fx for the partial derivative of f with respect to x. The
distinction will become obvious from the context as you develop experience.

2The software used to create Figure 1.20.1 incorrectly draws each vector centered at the
point it lives at, rather than putting the tail of the vector at this point. Most graphing
programs make this mistake; Sage is one of the few exceptions.
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Figure 1.21.1 The cross product as a directed area.
In the figure above, the height of the parallelogram is |~w| sin θ, so its area is

|~v × ~w| = |~v||~w| sin θ (1.21.1)

which is therefore the magnitude of the cross product.
An immediate consequence of Equation (1.21.1) is that, if two vectors are

parallel, their cross product is zero,

~v ‖ ~w ⇐⇒ ~v × ~w = ~0. (1.21.2)

The direction of the cross product is given by the right-hand rule: Point the
fingers of your right hand along the first vector (~v), and curl your fingers toward
the second vector (~w). You may have to flip your hand over to make this work.
Now stick out your thumb; that is the direction of ~v× ~w. In the example shown
above, ~v × ~w points out of the page. The right-hand rule implies that

~w × ~v = −~v × ~w (1.21.3)

as you should verify for yourself by suitably positioning your hand. Thus, the
cross product is not commutative.1 Another important property of the cross
product is that the cross product of a vector with itself is zero,

~v × ~v = ~0 (1.21.4)

which follows from any of the preceding three equations.
In terms of the standard orthonormal basis, the geometric formula quickly

yields

x̂× ŷ = ẑ,

ŷ × ẑ = x̂,

ẑ × x̂ = ŷ.

This cyclic nature of the cross product can be emphasized by abbreviating
this multiplication table as shown in the figure below. 2

1The cross product also fails to be associative, since for example x̂× (x̂× ŷ) = −ŷ but
(x̂× x̂) × ŷ = ~0.

2This is really the multiplication table for the unit imaginary quaternions, a number
system which generalizes the familiar complex numbers. Quaternions predate vector analysis,
which borrowed the i, j, k notation for the rectangular basis vectors, which are often written
as ı̂, ̂, k̂. Here, we have adopted instead the more logical names x̂, ŷ, ẑ.
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Figure 1.21.2 The cross product multiplication table.
Products in the direction of the arrow get a plus sign; products against the

arrow get a minus sign.
Using an orthonormal basis such as {x̂, ŷ, ẑ}, the geometric formula reduces

to the standard component form of the cross product. 3 If ~v = vx x̂+vy ŷ+vz ẑ
and ~w = wx x̂+ wy ŷ + wz ẑ, then

~v × ~w = (vx x̂+ vy ŷ + vz ẑ)× (wx x̂+ wy ŷ + wz ẑ)
= (vywz − vzwy) x̂+ (vzwx − vxwz) ŷ + (vxwy − vywx) ẑ (1.21.5)

which is often written as the symbolic determinant

~v × ~w =

∣∣∣∣∣∣
x̂ ŷ ẑ
vx vy vz
wx wy wz

∣∣∣∣∣∣ . (1.21.6)

We encourage you to use (1.21.6), rather than simply memorizing (1.21.5).
We also encourage you to compute the determinant as described below, rather
than using minors; this tends to minimize sign errors. A 3× 3 determinant can
be computed in the form

3This argument uses the distributive property, which must be proved geometrically if one
starts with (1.21.1) and the right-hand rule. This is straightforward in two dimensions, but
somewhat more difficult in three dimensions. As with the dot product, see our online article.4

http://mathdl.maa.org/mathDL/4/?pa=content&sa=viewDocument&nodeId=1156
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Figure 1.21.3 The determinant.
where one multiplies the terms along each diagonal line, subtracting the

products obtained along lines going down to the left from those along lines
going down to the right. While this method works only for (2× 2 and) 3× 3
determinants, it emphasizes the cyclic nature of the cross product.

Another important skill is knowing when not to use a determinant at all. For
simple cross products, such as (x̂+3 ŷ)× ẑ, it is easier to use the multiplication
table directly.

It is also worth pointing out that the multiplication table and the determinant
method generalize naturally to any (right-handed) orthonormal basis; all that
is needed is to replace the rectangular basis {x̂, ŷ, ẑ} by the one being used (in
the right order!). For example, in cylindrical coordinates, not only is

ŝ× φ̂ = ẑ (1.21.7)

(and cyclic permutations), but cross products can be computed as

~v × ~w =

∣∣∣∣∣∣
ŝ φ̂ ẑ
vs vφ vz
ws wφ wz

∣∣∣∣∣∣ (1.21.8)

where of course ~v = vs ŝ+ vφ φ̂+ vz ẑ and similarly for ~w.
A good problem emphasizing the geometry of the cross product is to find

the area of the triangle formed by connecting the tips of the vectors x̂, ŷ, ẑ
(whose base is at the origin).

1.22 Lines and Planes
Two points A and B determine a line. But there are also other ways to describe
a line. Rather than specifying two points, we can specify just one (A), then
give a vector ~v along the line.
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Figure 1.22.1 The geometry behind the vector description of a line.
So let ~A be the vector from the origin to the point A, and ~v be a vector

from A that points along the line. Then any other point P on the line can be
reached by going to A along ~A, then going along ~v. Thus, the vector

~r(u) = ~A+ ~v u (1.22.1)

from the origin to P provides a vector parameterization of the line. Equivalently,
if

~A = ax x̂+ ay ŷ + az ẑ,

~v = vx x̂+ vy ŷ + vz ẑ,



CHAPTER 1. COORDINATES AND VECTORS 31

then the line is given by the parametric equations

x = ax + vx u,

y = ay + vy u,

z = az + vz u,

which gives the coordinates (x, y, z) of the point P in terms of the parameter
u. A given line can have many parameterizations, depending not only on the
choice of the point A on the line and vector ~v along the line, but also on the
choice of parameter u.

How do two points determine a line? Using vector addition, you can think
of ~v as ~B − ~A, and use the vector description above, as shown in Figure 1.22.1.

It takes three points A, B, C to determine a plane, but again there are also
other descriptions. The orientation of a line is given by a vector ~v along the line.
By contrast, the orientation of a plane is given by a vector ~w perpendicular to
the plane. A plane can therefore be specified by giving a point A and a normal
vector ~w to the plane at the point A.

Figure 1.22.2 The geometry behind the vector description of a plane.
If ~r is the vector from the origin to P , then ~r − ~A is a vector in the plane,

as shown in Figure 1.22.2. If ~w is perpendicular to the plane, then it must be
perpendicular to any vector in the plane. In particular, it must be perpendicular
to ~r − ~A, so that

(~r − ~A) · ~w = 0 (1.22.2)

or equivalently
~r · ~w = ~A · ~w. (1.22.3)

Inserting the components

~r = x x̂+ y ŷ + z ẑ,

~w = wx x̂+ wy ŷ + wz ẑ,
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and setting
d = ~A · ~w = constant (1.22.4)

leads to
wxx+ wyy + wzz = d = wxax + wyay + wzaz (1.22.5)

for the equation of the plane through A with normal direction ~w. This equation
should look familiar! Note that the constant coefficients of this linear equation
are precisely the components of the normal vector!

How do three points determine a plane? Using vector addition, you can
construct two vectors in the plane, such as ~B− ~A and ~C− ~A. The cross product
of these vectors is perpendicular to the plane! Thus, set ~w = ( ~B− ~A)×( ~C− ~A),
and use the vector description above, as shown in Figure 1.22.2.

1.23 Linearity of the Dot and Cross Products
The linearity of the dot and cross products follows immediately from their
algebraic definitions. However, the above derivations of the algebraic formulas
from the geometric definitions assumed without comment that both the dot and
cross products distribute over addition. To complete the derivation, we must
check that linearity follows from the geometric definition. These geometric
derivations are shown in Figure 1.23.1 and Figure 1.23.2 below.

For the dot product, we must show that

(~v + ~u) · ~w = ~v · ~w + ~u · ~w

which is equivalent to showing that the projection of ~v + ~u along ~w is the sum
of the projections of ~v and ~u, which is immediately obvious from Figure 1.23.1.
In this figure, ~v is shown in blue, ~u in red, their sum in green, and ~w in black.

Figure 1.23.1 A geometric proof of the linearity of the dot product.
For the cross product, we must show that

~w × (~v + ~u) = ~w × ~v + ~w × ~u (1.23.1)

which follows with a little thought from Figure 1.23.2, which uses the same
color scheme as before.
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Figure 1.23.2 A geometric proof of the linearity of the cross product.
Consider in turn the vectors ~v, ~u, and ~v + ~u. The cross product of each

of these vectors with ~w is proportional to its projection perpendicular to ~w.
These projections are shown as solid lines in the figure. Since the projections
lie in the plane perpendicular to ~w, they can be combined into the triangle
shown in the middle of the figure. Two of the vectors making up the sides of a
triangle add up to the third; in this case, the sides are the projections of ~v, ~u,
and ~v + ~u, and the latter is clearly the sum of the first two. But each cross
product is now just a rotation of one of the sides of this triangle, rescaled by
the length of ~w; these are the arrows perpendicular to the faces of the prism.
Two of these vectors therefore still add to the third, as indicated by the vector
triangle in front of the prism. This establishes (1.23.1).



Chapter 2

Complex Numbers

2.1 The Complex Plane
Complex numbers are a generalization of the real numbers. They are useful in
many physics contexts, for example in the study of oscillations and in quantum
mechanics. Any calculation you can make with complex numbers, you can
make without them, but the calculations will be messier. The time you spend
learning how to manipulate complex numbers will pay off many times over.

Definition 2.1.1 Complex Number. A complex number z is an ordered
pair of real numbers x and y which are distinguished from each other by
adjoining the symbol i to the second number:

z = x+ iy, (2.1.1)

together with a multiplication rule described in Section 2.2. ♦

Notation 2.1.1 Real and Imaginary Parts of a Complex Number.
The first number, x, is called the real part of the complex number z (and
denoted Re z or < z) and the second number, y, is called the imaginary part
of z (and denoted Im z or = z).

Notice that the imaginary part of z is a REAL number.
A number that has zero for its imaginary part is called real or, for emphasis,

pure real. A number that has zero for its real part called imaginary, or, for
emphasis, pure imaginary.

34
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Figure 2.1.2 A pure real number z1 = 3, a pure imaginary number z2 = 2i,
and a more generic complex number z3 = 2− i, plotted as points in the complex
plane.

Graphs of Complex Numbers. It is helpful to graph a real number on the
real number line. Similarly, it can be helpful to graph a complex number on
a 2-d plane where x is recorded on the horizontal axis (called the real axis)
and y is recorded on the vertical axis (called the imaginary axis). This plane,
shown in Figure 2.1.2, is called the complex plane or, sometimes, an Argand
diagram.

Analogy with Two-Dimensional Vectors. There is a powerful analogy
between vectors in two dimensions and complex numbers that should be obvious
from the graph of the complex plane. Every operation that you can do with two
dimensional vectors has an analogue with complex numbers. But the reverse
is not true; as you will see in Section 2.2, complex numbers have additional
structure that comes from a multiplication rule.

2.2 Algebra with Complex Numbers: Rectangu-
lar Form

The form of the complex number in Section 2.1:

z = x+ iy (2.2.1)

is called the rectangular form, to refer to rectangular coordinates.
We will now extend the definitions of algebraic operations from the real

numbers to the complex numbers. For two complex numbers z1 = x1 + iy1 and
z2 = x2 + iy2, we define

Addition and Subtraction. The sum of z1 and z2 is given by

z1 + z2 = (x1 + iy1) + (x2 + iy2)
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= (x1 + x2) + i(y1 + y2) (2.2.2)

Notice that all we have done is add the real parts of the complex numbers
and separately added the imaginary parts. You should be able to convince
yourself, with a diagram in the complex plane, that this definition is the same
as the parallelogram rule for addition of vectors. The rule for subtraction of
complex numbers follows as a straightforward extension.

Multiplication. To define multiplication, we need a new rule, i2 = −1. We
say that "i is a square root of minus one". This rule has no analogy for vectors
in two dimensions and gives us additional algebraic structure that these vectors
do not have.

Now we define multiplication in an obvious way by using the distributive
rule of multiplication (i.e. we can "FOIL" everywhere).

z1z2 = (x1 + iy1)(x2 + iy2)
= x1y1 + x1iy2 + iy1x2 + (i)2y1y2

= (x1x2 − y1y2) + i(x1y2 + x2y1) (2.2.3)

It is conventional to rearrange the terms in the product into standard form,
i.e. so that the real terms are all together and the pure imaginary terms are all
together.

Informal Description of Properties. We see (and/or have assumed) that
addition and multiplication of complex numbers is commutative, associative,
and distributive. This means that you can do algebra with complex numbers
exactly as you are used to; just remember that whenever you see i2 to replace
it with −1.

2.3 Complex Conjugate and Norm
Definition 2.3.1 Complex Conjugate. The complex conjugate z∗ of
a complex number z = x+ iy is found by replacing every i by −i. Therefore
z∗ = x− iy. (A common alternate notation for z∗ is z̄.) ♦

Geometrically, you should be able to see that the complex conjugate of any
complex number is found by reflecting in the real axis, as shown in Figure 2.3.2.
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Figure 2.3.2 The point z = x + iy and its complex conjugate z∗ = x − iy.
Note that, in this example, we have deliberately chosen z to be in the fourth
quadrant to make you think about which of the variables x, y, and φ are positive
or negative.

You can find the conjugate of any complicated algebraic expression by taking
the conjugate of all of the individual pieces. For example, for a matrix M , the
conjugate M∗ is found by taking the conjugate of each of the components.

Now let’s calculate an important product

zz∗ = (x+ iy)(x− iy)
= x2 + y2

= |z|2 (2.3.1)

Definition 2.3.3 Norm (or Magnitude) of a Complex Number. Notice
that the product zz∗ is always a positive, real number. The (positive) square
root of this number is the distance of the point z from the origin in the complex
plane. We call the square root the norm or magnitude of z and we use the
same notation as “absolute value,” i.e. |z|. In this way, we see that the
definition of absolute value, as in |−2| = 2, was never “strip off the minus sign,”
but really “how far is −2 from the origin.” ♦

2.4 Division: Rectangular Form
Method for Dividing Two Complex Numbers in Rectangular Form.
We can use the concept of complex conjugate to give a strategy for dividing
two complex numbers, z1 = x1 + iy1 and z2 = x2 + iy2. The trick is to multiply
by the number 1, in a special form that simplifies the denominator to be a real
number and turns division into multiplication.

Consider:

z1

z2
= z1

z2

z∗2
z∗2
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= z1z
∗
2

|z|2
(2.4.1)

The final expression is straightforward to divide into its real and imaginary
parts since the denominator is pure real.

In the following activity, you will find the real and imaginary parts of a
quotient for the general case. Rather than memorizing the final answer, it will
be easier to just repeat this method every time you are dividing two complex
numbers.
Activity 2.4.1 Divide Two Complex Numbers in Rectangular Form.
Find the real and imaginary components of the complex number z1

z2
where

z1 = x1 + iy1 and z2 = x2 + iy2.
Solution.

z1

z2
= x1 + iy1

x2 + iy2

=
(
x1 + iy1

x2 + iy2

)(
x2 − iy2

x2 − iy2

)
= (x1y1 − x2y2) + i(x1y2 + x2y1)

x2
2 + y2

2

=
(
x1y1 − x2y2

x2
2 + y2

2

)
+ i

(
x1y2 + x2y1

x2
2 + y2

2

)
(2.4.2)

2.5 Visualizing Circle Trigonometry
Trigonometry originated as the study of triangles, but a more general definition
of the trigonometric functions uses the unit circle.
The projections of P onto the axes determine the signs of cosφ and sinφ in
each quadrant.

For a point P on the unit circle, we define cosφ as the projection of the
point P onto the x-axis and sinφ as the projection of the point P onto the
y-axis, where φ is the usual angle around the origin, measured counterclockwise
from the positive x-axis. This construction is shown in Figure 2.5.1.

Figure 2.5.1 The coordinates of a point P on the unit circle are (x, y) =
(cosφ, sinφ)

Activity 2.5.1 The Relationship between the Unit Circle and Graphs
of cosφ and sinφ. To the right of a plot of the unit circle, inspired by
Figure 2.5.1, make a plot of sinφ vs. φ. Align the vertical dimensions and
spacing on the two plots so that it’s easy to see the relationship. To see a
similar relationship for cosφ, where should you place the plot of cosφ vs. φ?
Solution. The graphs of cosφ vs. φ should be turned sideways and placed
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below the unit circle, as illustrated in Figure 2.5.2.

Figure 2.5.2 This combined figure shows the relationship between a point P
moving around the unit circle and the (rectangular) graphs of cosφ and sinφ,
plotted as functions of φ.

2.6 Euler’s Formula
As soon as we allow complex numbers into our mathematics, we also need to
understand how to extend the definition of familiar functions of real-valued
arguments to complex-valued arguments. Most of these extensions are based
on Euler’s formula.
Definition 2.6.1 Euler’s formula.
When evaluated for the special angle φ = π, Euler’s formula relates the five
most important constants in mathematics! eiπ + 1 = 0

The formula
eiφ = cosφ+ i sinφ, (2.6.1)

called Euler’s formula, defines the exponential of a pure imaginary number
iφ in terms of the sine and cosine of a real number φ. ♦

Frequently used formulas. We can rearrange Euler’s formula and its com-
plex conjugate

e−iφ = cosφ− i sinφ (2.6.2)
to find expressions for sinφ and cosφ in terms of complex exponentials:

cosφ = 1
2(eiφ + e−iφ) (2.6.3)

sinφ = 1
2i (e

iφ − e−iφ). (2.6.4)

You will use these expressions for sine and cosine frequently. Make sure you
can recognize the right-hand sides of these equations.

Activity 2.6.1 Proofs of Euler’s Formula. Euler’s formula can be "proved"
in two ways:

1. Expand the left-hand and right-hand sides of Euler’s formula (2.6.1) in
terms of known power series expansions. Compare equal powers.

2. Show that both the left-hand and right-hand sides of Euler’s formula
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(2.6.1) are solutions of the same second order linear differential equation
with constant coefficients. Since only two solutions of a second order
linear equation are linearly independent, it must be true that eiφ is a
linear combination of cosφ and sinφ, i.e.

eiφ = A cosφ+B sinφ. (2.6.5)

Choose boundary conditions and known properties of the exponential
function to show that A = 1 and B = i.

Note: If you only know properties of the exponential function for real
numbers, then Euler’s formula and the "proofs" above are not really proofs,
rather they are the definition of the exponential for a pure imaginary argument.
Technically, this happens through a process called analytic continuation, see
Section 2.10.

2.7 Exponential Form
Definition 2.7.1 The Exponential Form of a Complex Number. If we
use polar coordinates

x = r cosφ (2.7.1)
y = r sinφ (2.7.2)

to describe the complex number z = x+ iy, we can factor out the r and use
Euler’s formula to obtain the exponential form of the complex number
z = reiφ:

z = x+ iy

= r cosφ+ ir sinφ
= r(cosφ+ i sinφ)
= reiφ (2.7.3)

♦

Geometric Interpretation. The parameters r and φ inherit their geometric
interpretation from polar coordinates, i.e. r represents the distance of z from
the origin in the complex plane and φ represents the polar angle, measured in
radians, counterclockwise from the real axis, as shown in Figure 2.7.2
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Figure 2.7.2 The point z = reiφ.

2.8 Algebra with Complex Numbers: Exponen-
tial Form

The paragraphs below discuss how to do basic arithmetic operations for two
complex numbers z1 = r1e

iφ1 and z2 = r2e
iφ2 .

Addition and Subtraction. There is nothing simple you can do to simplify
the sum and difference of two complex numbers written in exponential form,
other than to convert them to rectangular form.

COMING SOON: Factoring out a common phase.

Multiplication and Division. It is easier to do multiplication and division
of two complex numbers in exponential form than in rectangular form:

z1z2 = r1e
iφ1 r2e

iφ2

= r1r2e
i(φ1+φ2) (2.8.1)

z1

z2
= r1e

iφ1/r2e
iφ2

= r1

r2
ei(φ1−φ2) (2.8.2)

Notice that the magnitudes of the two complex numbers multiply (or divide)
whereas the angles add (or subtract).

2.9 Visualizing the Exponential Function
Using Euler’s formula Section 2.6, we now know how to understand the ex-
ponential function for both real variables ex and for pure imaginary variables
eiy = cos y + i sin y. What happens when we put these ideas together? We’d
like to extend the definition of the exponential function to be valid when the
independent variable is an arbitrary complex number z = x+ iy. In particular,
let’s extend the definition so that common exponential rule

ez1+z2 = ez1ez2 (2.9.1)
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still holds. (Extending the domain of a function from the reals to the complexes
is called analytic continuation, see Section 2.10).

Don’t use the exponential form z = reiφ in this calculation or you will end up
having to evaluate exponentials of exponentials

ez = ere
iφ

. (2.9.2)

Definition 2.9.1 The Exponential of a Complex Number. Using these
properties, we see that

ez = ex+iy

= ex eiy

= ex (cos y + i sin y)
= ex cos y + iex sin y,

The exponential of a complex number is also a complex number; the real and
imaginary parts are products of real exponentials and real cosines and sines.

♦
To graph a complex-valued function of a complex variable, we would need

to live in four dimensions: two for the input variable (domain) and two for the
output variable (range). A common way to handle this problem is to plot the
real and imaginary parts of the output on separate graphs, so that, in each
case we only need two dimensions for the input variable and one for the output.
The following activity explores such graphs for the real part of the exponential
function Re ez = ex cos y.

Activity 2.9.1 Visualizing the Exponential Function of a Complex
Variable. Look at the figure below. The slider on the left-hand plot chooses
various straight-line cross-sections of the complex-plane which range from the
positive x-axis when θ = 0 to the negative y-axis when θ = −π/2. Start by
moving the slider and seeing what happens to the green line segment in the
right-hand plot while it is still in its initial position; this shows you the domain.

Next, click and drag on the right-hand plot (up and to the right) to rotate the
graph until it looks three-dimensional. Now, on the right-hand graph, you are
seeing the full graph of the real part of the exponential function Re ez = ex cos y.
Move the slider back and forth between its two limiting cases: the real-valued
exponential function ex when y = 0 to the real-valued trigonmetric function
cos y when x = 0. The left-hand graph shows just a graph of the cross-section,
so its easier to see.

Between the two limiting cases, notice how the cosine function cos y creates
wiggles and the real exponential function ex makes the magnitude of the wiggles
increase for larger values of x.
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Figure 2.9.2 The graph of Re ez = Re ex+iy = ex cos y.

2.10 Functions of a Complex Variable
In Section 2.9, we extended the definition of the exponential function to include
complex numbers as inputs and in (2.6.3) and (2.6.4) we defined the sine and
cosine of a pure imaginary argument. We can go further and extend the sine
and cosine functions to be valid for a general complex-valued argument z. We
define:

cos z = 1
2(eiz + e−iz) (2.10.1)

sin z = 1
2i (e

iz − e−iz) (2.10.2)

Definition 2.10.1 Analytic Continuation. The process of extending the
definition of a function from a real-valued argument to a complex-valued
argument is called analytic continuation. ♦

This process is done to make the extension as smooth (i.e. differentiable)
as possible. You can learn more about analytic continuation in a course on
complex-variable theory. This beautiful mathematics goes well beyond the
current scope of this text.

The analytic continuations for powers and roots is discussed in Section 2.11
and for logarithms in Section 2.12

To Remember. The good news is that any formulas that you memorized for
real exponentials, real trigonometric functions, powers and roots, and logarithms
also apply to their analytic continuations. In particular:

ez1+z2 = ez1ez2 (2.10.3)

Also, the analytic continuations of these common functions of a real variable
are unique.

2.11 Powers and Roots of Complex Numbers
If a complex number z is written in exponential form:

z = reiφ, (2.11.1)

then the nth power of z is:

zn = rn (eiφ)n
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= rn einφ (2.11.2)

and we see that the distance of the point z from the origin in the complex
plane has been raised to the nth power, but the angle has been multiplied by
n. Similarly, an nth root of z is:

z
1
n = r

1
n ei

φ
n . (2.11.3)

For example, a square root of −4 = 4 exp(iπ) is given by:

z
1
2 = (4eiπ) 1

2

= 2e iπ2
= 2i (2.11.4)

This is one of the square roots of −4; what about the other root?
It turns out that we can find the other root by including in our original

expression for z the multiplicity of angles, all of which give the same point in
the complex plane, i.e.

z = r eiπ+i2πm (2.11.5)

where m is any positive or negative integer. Now, when we take the root, we
get an infinite number of different factors of the form exp(i 2πm

n ). How many
of these correspond to different geometric angles in the complex plane? For
m = {0, 1, . . . , n− 1}, we will get different angles in the complex plane, but as
soon as m = n the angles will repeat. Therefore, we find n distinct nth roots
of z. If z is real and positive, then one of these roots will be the positive, real
nth root that you learned about in high school.

FIXME add an example of cube roots with a picture. Show that the roots
are equally spaced around a circle in the complex plane with radius r1/n.

2.12 Logarithms of Complex Numbers
How can we extend the logarithm function to complex numbers? We would
like to retain the algebraic property that the logarithm of a product is the sum
of the logarithms:

ln(ab) = ln a+ ln b (2.12.1)

Then, if we write the complex number z in exponential form:

z = r ei(φ+2πm) (2.12.2)

and use the property (2.12.1), we find:

ln z = ln(r ei(φ+2πm))
= ln r + ln(ei(φ+2πm))
= ln r + i(φ+ 2πm) (2.12.3)

The logarithm function (for complex numbers) is an example of a multiple-
valued function. All of the multiple-values of the logarithm have the same real
part ln r and the imaginary parts all differ by 2π.

An interesting problem to try is to find ln(−1). You were probably told in
high school algebra that the logarithms of negative numbers do not exist.
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Operations with Matrices

3.1 Matrix Addition
For matrix addition to be defined, both matrices must be of the same dimension,
that is, both matrices must have the same number of rows and columns.
Addition then proceeds by adding corresponding components, as in

Cij = Aij +Bij. (3.1.1)

For example, if

A =
(
a b
c d

)
, B =

(
e f
g h

)
, (3.1.2)

then

A+B =
(
a b
c d

)
+
(
e f
g h

)
=
(
a+ e b+ f
c+ g d+ h

)
. (3.1.3)

Similarly,  1 2
3 4
5 6

+

 7 8
9 10
11 12

 =

 8 10
12 14
16 18

 . (3.1.4)

However, (
1 2
3 4

)
+

 5 6 7
8 9 10
11 12 13

 (3.1.5)

is undefined.

3.2 Scalar Multiplication
A matrix can be multiplied by a scalar, in which case each element of the matrix
is multiplied by the scalar. In components,

Cij = λAij (3.2.1)

where λ is a scalar, that is, a complex number. For example, if

A =
(
a b
c d

)
, (3.2.2)

then
3A = 3 ·

(
a b
c d

)
=
(

3a 3b
3c 3d

)
. (3.2.3)

45
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Checkpoint 3.2.1 Try it yourself: Scalar Multiplication. Compute:

i ·
(

1 i
−2i 3

)
. (3.2.4)

Solution.

i ·
(

1 i
−2i 3

)
=
(

(i)(1) (i)(i)
(i)(−2i) (i)(3)

)
=
(
i −1
2 3i

)
. (3.2.5)

3.3 Matrix Multiplication
Matrices can also be multiplied together, but this operation is somewhat
complicated. Watch the progression in the examples below; basically, the
elements of the row of the first matrix are multiplied by the corresponding
elements of the column of the second matrix. Matrix multiplication can be
written in terms of components as

Cij =
∑
k

AikBkj . (3.3.1)

The simplest example is

(
a b

)(e
g

)
= ae+ bg (3.3.2)

which should remind you of the dot product. Somewhat more complicated
examples are (

a b
c d

)(
e
g

)
=
(
ae+ bg
ce+ dg

)
(3.3.3)

and (
a b

)(e f
g h

)
=
(
ae+ bg af + bh

)
. (3.3.4)

A more general example, combining these ideas, is given by(
a b
c d

)(
e f
g h

)
=
(
ae+ bg af + bh
ce+ dg cf + dh

)
. (3.3.5)

and a numerical example is(
1 2
3 4

)(
5 6
7 8

)
=
(

1(5) + 2(7) 1(6) + 2(8)
3(5) + 4(7) 3(6) + 4(8)

)
=
(

19 22
43 50

)
. (3.3.6)

Note however that (
a b

) (
c d

)
(3.3.7)

is undefined. For matrix multiplication to be defined, the number of columns
of the matrix on the left must equal the number of rows of the matrix on the
right.

Checkpoint 3.3.1 Try it yourself: Matrix Multiplication. Compute(
1 i
−i 1

)(
1
−1

)
. (3.3.8)
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Solution. (
1 i
−i 1

)(
1
−1

)
=
(

(1)(1) + (i)(−1)
(−i)(1) + (1)(−1)

)
=
(

1− i
−1− i

)
.

Definition 3.3.2 Outer Product. In the special case of a column times a
row, the matrix multiplication is called an outer product. ♦

The outer product has an important geometric interpretation, especially
when the column and row are Hermitian adjoints of each other, see Section 5.6.
For example, the following is an outer product:(

a
b

)(
a∗ b∗

)
=
(
aa∗ ab∗

ba∗ bb∗

)
. (3.3.9)

3.4 Transpose
The transpose of a matrix is obtained by interchanging rows and columns. In
terms of components,

(Aij)T = Aji. (3.4.1)
For example,

A =
(
a b
c d

)
=⇒ AT =

(
a c
b d

)
(3.4.2)

and

B =

 a b c
d e f
g h i

 =⇒ BT =

 a d g
b e h
c f i

 . (3.4.3)

A square matrix is called symmetric if it is equal to its transpose, that is, if
A = AT .

Non-square matrices also have transposes, for example

v =

 x
y
z

 =⇒ vT =
(
x y z

)
. (3.4.4)

3.5 Hermitian Adjoint
The Hermitian adjoint of a matrix is the same as its transpose except that
along with switching row and column elements you also complex conjugate all
the elements. If all the elements of a matrix are real, its Hermitian adjoint and
transpose are the same. In terms of components,

(Aij)† = A∗ji. (3.5.1)

For example, if

A =

 1
i
−2i

 (3.5.2)

then
A† =

(
1 −i 2i

)
. (3.5.3)

A matrix is called Hermitian if it is equal to its adjoint, A = A†.
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Checkpoint 3.5.1 Try it yourself: Hermitian Adjoint. Compute B† if

B =
(

1 i
−5i i

)
. (3.5.4)

Solution.
B† = (BT )∗ =

(
1 −5i
i i

)∗
=
(

1 5i
−i −i

)
. (3.5.5)

3.6 Dot Products
The geometric, coordinate independent definition of the dot product of two
vectors ~v and ~w, thought of as arrows in space, is

~v · ~w = |~v||~w| cos γ (3.6.1)

where γ is the angle between ~v and ~w. If we represent the two vectors by their
components in a coordinate system

~v
.=

vxvy
vz

 ~w
.=

wxwy
wz

 (3.6.2)

then the geometric definition is equivalent
We are not proving the equivalence here. Please see our online paper with
cool, rotatable figures!! ∗∗∗Update the figures and add a link here.∗∗∗

to the algebraic definition

~v · ~w =
(
vx vy vz

)wxwy
wz

 (3.6.3)

= vxwx + vywy + vzwz (3.6.4)

In physics, the dot product is most often used for two purposes: to find the
length of a vector |~v| =

√
~v · ~v and to show that two vectors are perpendicular

to each other ~v ⊥ ~w ⇔ ~v · ~w = 0.
Activity 3.6.1 Show, from the geometric definition of the dot product (3.6.1),
that the length of a vector is given by |~v| =

√
~v · ~v. Repeat for the algebraic

definition (3.6.4).

Activity 3.6.2 Show, from the geometric definition of the dot product (3.6.1),
that the two vectors are perpendicular if and only if their dot product is zero
~v ⊥ ~w ⇔ ~v · ~w = 0. Repeat for the algebraic definition (3.6.4).

The generalization of the dot product to vectors with complex components
can be found in Section 3.7.

3.7 Inner Products for Complex Vectors
Column matrices play a special role in physics, where they are interpreted as
vectors or, in quantum mechanics, states. To remind us of this uniqueness they
have their own special notation; introduced by Dirac, called bra-ket notation.
In bra-ket notation, a column matrix, called a ket, can be written

|v〉 .=

vxvy
vz

 . (3.7.1)
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The Hermitian adjoint of this vector is called a bra

〈v| .= (|v〉)† =
(
v∗x v∗y v∗z

)
. (3.7.2)

Notice that we are not assuming that the components of the vector are real.
Now we want to generalize the concept of dot product from Section 3.6

to this case where the components of the vector or state are not necessarily
real. This generalization is technically called an inner product although many
scientists will still casually use the term dot product. If we take |v〉 to be a
3-vector with components vx, vy, vz as above, then the inner product of this
vector with itself is called a braket

〈v|v〉 =
(
v∗x v∗y v∗z

)vxvy
vz

 = |vx|2 + |vy|2 + |vz|2 (3.7.3)

which is a positive real number. We will call the square root of this positive
real number the magnitude (or, more casually, the length) of the vector, even
when the vector is abstract and there is no length that we would be able to
measure with a ruler. Similarly, we will say that two vectors are orthogonal
(or, more casually, perpendicular) whenever their inner product is zero, even if
there is no angle that we could measure with a protractor.

In physics, you will encounter many other abstract spaces that have the
same algebraic properties as vectors and dot products. A list of these abstract
properties and some examples can be found in Section 14.1 and Section 14.2.

3.8 Trace
The trace of a (square) matrix is just the sum of all of its diagonal elements.
In terms of components,

tr(A) =
∑
i

Aii. (3.8.1)

For example, if

A =

1 2 3
4 5 6
7 8 9

 (3.8.2)

then
tr(A) = 1 + 5 + 9 = 15. (3.8.3)

Checkpoint 3.8.1 Try it yourself: Trace. Compute tr(B) if

B =

 1 34 5
23 5 98
132 7 9

 . (3.8.4)

Solution.
tr(B) = 1 + 5 + 9 = 15. (3.8.5)

3.9 Determinants
The determinant of a (square) matrix is somewhat complicated in general, so
you may want to check a reference book. The 2 × 2 and 3 × 3 cases can be
memorized using the examples below.
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The determinant of a 2× 2 matrix is given by

det
(
a b
c d

)
=
∣∣∣∣a b
c d

∣∣∣∣ = ad− bc. (3.9.1)

Notice in the equation above the two common notations for determinant.
The determinant of a 3× 3 matrix is computed as follows:∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣ = det

a b c
d e f
g h i


= a ·

∣∣∣∣e f
h i

∣∣∣∣− b · ∣∣∣∣d f
g i

∣∣∣∣+ c ·
∣∣∣∣d e
g h

∣∣∣∣
= a · (ei− hf)− b · (di− gf) + c · (dh− ge)
= aei− ahf − bdi+ bgf + cdh− cge. (3.9.2)

The smaller 2 × 2 determinants are called the cofactors of the elements
a, b, and c, respectively. The minus sign in front of b is part of the cofactor.
Cofactors are formed by keeping only what is left after eliminating everything
from the row and column where the element desired resides. So, for a, the row
elements, b and c, and the column elements, d and g, are eliminated, leaving
the 2× 2 matrix shown above.

Computing 4 × 4 matrices is a straightforward extension of the above
procedure, but it is easier to just go to a computer!!!

Checkpoint 3.9.1 Try it yourself: Determinant. Compute det(B) if

B =

1 2 3
4 5 6
7 8 9

 . (3.9.3)

Solution. The method above extends naturally to square matrices of any size,
but there is an easier way to find the determinant of a 3× 3 matrix that uses
cyclic symmetry. Multiply the numbers on each “forward” diagonal (wrapping
around as needed) and add them together, then do the same on each “backward”
diagonal, but subtract the latter subtotal from the former.

Applying this method to B, we have

det(B) = (1)(5)(9) + (2)(6)(7) + (3)(4)(8)
− (3)(5)(7)− (1)(6)(8)− (2)(4)(9) = 0 (3.9.4)

You can use the Sage code below to compute the determinant of any matrix.

B=matrix ([[1,2,3],[4,5 ,6] ,[7 ,8 ,9]])
det(B)

3.10 Inverses
The matrix inverse of a matrix A, denoted A−1, is the matrix such that when
multiplied by the matrix A the result is the identity matrix. (The identity
matrix is the matrix with ones down the diagonal and zeroes everywhere else.)

For 2× 2 matrices, if

A =
(
a b
c d

)
(3.10.1)
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then
A−1 = 1

det(A)

(
d −b
−c a

)
. (3.10.2)

For 3×3 matrices B, B−1 is the transpose of the matrix made of all cofactors
of B, divided by the determinant of B. This is easier said in symbols, so if

B =

a b c
d e f
g h i

 (3.10.3)

then

B−1 = 1
det(B)



∣∣∣∣e f
h i

∣∣∣∣ −
∣∣∣∣b c
h i

∣∣∣∣ ∣∣∣∣b c
e f

∣∣∣∣
−
∣∣∣∣d f
g i

∣∣∣∣ ∣∣∣∣a c
g i

∣∣∣∣ −
∣∣∣∣a c
d f

∣∣∣∣∣∣∣∣d e
g h

∣∣∣∣ −
∣∣∣∣a b
g h

∣∣∣∣ ∣∣∣∣a b
d e

∣∣∣∣


(3.10.4)

In both cases, the inverse only exists if the determinant is nonzero.

Checkpoint 3.10.1 Try it yourself: Inverse. Suppose that

Q =
(

1 2
3 4

)
. (3.10.5)

What is Q−1? Verify that QQ−1 is the identity matrix.
Solution. Using (3.10.2), we have det(Q) = (1)(4)− (2)(3) = −2, so

Q−1 = −1
2

(
4 −2
−3 1

)
=
(
−2 1
3
2 − 1

2

)
(3.10.6)

so that

QQ−1 =
(

1 2
3 4

)(
−2 1
3
2 − 1

2

)
=
(

(1)(−2) + (2)( 3
2 ) (1)(1) + (2)(− 1

2 )
(3)(−2) + (4)( 3

2 ) (3)(1) + (4)(− 1
2 )

)
=
(

1 0
0 1

)
(3.10.7)



Chapter 4

Eigenvectors and Eigenvalues

This chapter describes the procedure for finding eigenvectors and eigenvalues.
We use bra-ket notation. If this notation is unfamiliar, please see a brief
explanation in Section 3.7

4.1 What are Eigenvectors?
Eigenvectors appear ubiquitously in physics. For example, they are the funda-
mental mathematical objects underlying the study of normal modes in classical
oscillating systems and the building blocks of states in a quantum theory.

Definition 4.1.1 Eigenvalue/Eigenvector Equation. For a given square
matrix A, the eigenvalue/eigenvector equation is

A |v〉 = λ |v〉 (4.1.1)

A solution |v〉 of this equation is called an eigenvector and the scalar λ is
called the eigenvalue. ♦

The terms eigenvector, eigenfunction, and eigenstate all refer to equivalent
mathematical concepts. (The first is generic, whereas the second is often used in
contexts involving differential operators and functions, and the last in quantum
mechanics contexts.) The term eigenvalue, however, is a different kind of
mathematical object. It refers always to the scalar λ.

Notice that the matrix A and the scalar λ are very different mathematical
objects. When a real matrix acts on an arbitrary real vector it can change its
length and/or its direction. Eigenvectors are special; the eigenvalue equation
says that only their length and not their direction changes. If the matrix is
not real, then we lose this clear geometric interpretation, but the same general
idea still holds. The eigenvector/eigenvalue equation says that, for the very
special vectors, called eigenvectors, when the matrix operates on them they
only change by being multiplied by a scalar. Depending on the context, this
scalar may be any real number including zero or negative or even a complex
number. In some contexts, it may have physical dimensions, such as factors of
~. Even in these cases, we will still use the language of length and direction.

In this section, we have introduced the concept of eigenvectors for matrices,
but the generalizations to any linear operator see Section 14.8 such as differential
operators and eigenfunctions or to abstract Hermitian operators and eigenstates
are straightforward.

52
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4.2 Finding Eigenvalues
Informal definition: An eigenvector is a vector whose length may be
changed by a transformation, but not its direction .

Method for Finding Eigenvalues of a Square Matrix. In order to find
the eigenvalues of a square matrix A, we must find the values of λ such that
the equation

A |v〉 = λ |v〉 (4.2.1)
admits solutions |v〉. (The solutions |v〉 are eigenvectors of A, as discussed in
the next section.) Rearranging terms, |v〉 must satisfy

(λI −A) |v〉 = 0 (4.2.2)

where I denotes the identity matrix (of the same size as A). Suppose that
the inverse matrix (λI −A)−1 exists. Multiplying both sides of (4.2.2) by this
inverse would then yield

(λI −A)−1(λI −A) |v〉 = |v〉 = 0 (4.2.3)

which is not a very interesting solution. So, instead, we want (λI −A) not to
have an inverse. When does this happen?

Claim: A square matrix A does not have an inverse if and only if detA = 0.

Theorem 4.2.1 The Eigenvalues of a Square Matrix A. Thus, the
eigenvalues of A are the solutions of the equation det(λI −A) = 0.

This is one of those cases where the mathematicians can give special cases
where some expected eigenvalues are missing, but for undergraduate physics
contexts like Hermitian and unitary matrices you will always get n eigenvalues,
see Section 5.3 and Section 5.5.

Usually, this computation yields a polynomial equation in λ, which is of
order n if A is an n×n matrix. Thus, we expect n (complex) eigenvalues, which
however might not be distinct.

Definition 4.2.2 Degeneracy/Multiplicity. In the case of an eigenvalue
that is repeated m times, we call the eigenvalue m-fold degenerate, or,
equivalently, of multiplicity m. For more information about degenerate
eigenvalues, see Section 4.6. ♦

Example. Suppose A =
(

1 2
9 4

)
. Then we must solve

0 = |λI −A| =
∣∣∣∣1 2
9 4

∣∣∣∣ = (λ− 1)(λ− 4)− 18 (4.2.4)

or equivalently
0 = λ2 − 5λ− 14 = (λ− 7)(λ+ 2), (4.2.5)

and the eigenvalues in this case are λ = 7 and λ = −2.

4.3 Finding Eigenvectors

Examples. Having found the eigenvalues of the example matrix A =
(

1 2
9 4

)
in (4.2.2) to be 7 and −2, we can now ask what the corresponding eigenvectors
are. We must therefore solve the equation

A |v〉 = λ |v〉 (4.3.1)
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in the two cases λ = 7 and λ = −2. In the first case, we have(
1 2
9 4

)(
x
y

)
= 7

(
x
y

)
(4.3.2)

or equivalently (
x+ 2y
9x+ 4y

)
=
(

7x
7y

)
. (4.3.3)

Thus, we must solve this system of two equations. But we quickly discover
that these equations are reduntant, since the first implies 2y = 6x, while the
second implies 3y = 9x, which is the same condition. This is a good thing!
(Why?)

We conclude that any vector
(
x
y

)
with y = 3x is an eigenvector of A with

eigenvalue 7. To check an explicit example, choose any value for x, such as
x = 1, yielding the vector

|v7〉
.=
(

1
3

)
(4.3.4)

and check by explicit computation that A |v7〉 = 7 |v7〉, as expected.
Turning to the case λ = −2, a similar construction yields(

1 2
9 4

)(
x
y

)
= −2

(
x
y

)
(4.3.5)

or equivalently (
x+ 2y
9x+ 4y

)
=
(
−2x
−2y

)
, (4.3.6)

and the first equation now yields 2y = −3x, while the second yields 6y = −9x.
Again, these two equations are redundant; the eigenvectors with eigenvalue −2
satisfy y = − 3

2 . An explicit example is

|v−2〉
.=
(

2
−3

)
(4.3.7)

and you should again check by explicit computation that A |v−2〉 = −2 |v−2〉.

To Remember. The set of equations that you solve for the eigenvectors will
always be redundant (or trivial). So you will always have to choose one of
the components. This freedom leads to the useful property that multiples of
eigenvectors are still eigenvectors, see Section 4.4.

4.4 Normalization of Eigenvectors
In Section 3.7, we defined the inner product operation on abstract vectors with
complex components, such as

|v〉 .=

ab...
 . (4.4.1)

If we take the inner product of this vector with itself,

〈v|v〉 =
(
a∗ b∗ . . .

)ab...

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= |a|2 + |b|2 + . . . , (4.4.2)

the operation always yields a positive, real number. Thus, we can use the
square root of this operation ||v〉|.

||v〉| = {〈v|v〉}
1
2 (4.4.3)

to define the norm (also called magnitude or length) of the vector. This
definition is a natural generalization of the dot product, see Section 1.8, of a
real vector with itself.
Definition 4.4.1 Normalized Vector. From the eigenvalue/eigenvector
equation (4.1.1):

A |v〉 = λ |v〉 (4.4.4)

it is straightforward to show that if |v〉 is an eigenvector of A, then, any multiple
N |v〉 of |v〉 is also an eigenvector since N can pull through to the left on both
sides of the equation.
If a choice of N normalizes a particular vector, then so does any arbitrary
complex phase times the original number Neiα (for α real). Usually, we choose
N to be real, for simplicity.

It is always possible to choose the number N to rescale the eigenvector to
have length 1. Such an eigenvector is called normalized. ♦

4.5 Special Case: Diagonal Matrices
Definition 4.5.1 Diagonal Matrix. A square matrix whose only nonzero
entries lie on the main diagonal is called a diagonal matrix. ♦

The simplest example of a diagonal matrix is the identity matrix

I =


1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ... 1

 . (4.5.1)

Eigenvalues and Eigenvectors of Diagonal Matrices. It is easy to find
the eigenvalues and eigenvectors of a diagonal matrix! For example, consider
the matrix

A =

µ 0 0
0 ν 0
0 0 σ

 . (4.5.2)

The eigenvalues of A are clearly {µ, ν, σ} since

det (λI −A) =

∣∣∣∣∣∣
λ− µ 0 0

0 λ− ν 0
0 0 λ− σ

∣∣∣∣∣∣
= (λ− µ)(λ− ν)(λ− σ). (4.5.3)

It is much easier to check that something is an eigenvector than to find the
eigenvectors using the procedure in Section 4.3.

Check that the corresponding eigenvectors are just the standard basis
1

0
0

 ,

0
1
0

 ,

0
0
1

 . (4.5.4)
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To Remember. The eigenvalues of a diagonal matrix are just the diagonal
elements themselves. The eigenvectors of a diagonal matrix are just the standard
basis.

4.6 Degeneracy and Eigenspaces
An Example of Degenerate Eigenvalues. It is not always the case that
an n × n matrix has n distinct eigenvectors. In Section 4.2, we defined a
repeated eigenvalue to be degenerate. For example, consider the matrix

B =

3 0 0
0 3 0
0 0 5

 , (4.6.1)

whose eigenvectors are clearly the standard basis. But what are the eigenvalues
of B? Again, the answer is obvious: 3 and 5. In such cases, the eigenvalue
3 is a degenerate eigenvalue of B, since there are two linearly independent
eigenvectors of B with eigenvalue 3. In this case, one also says that 3 is a
repeated eigenvalue of multiplicity 2.

However, that’s not the whole story. Setting

|v〉 .=

1
0
0

 , |w〉 .=

0
1
0

 , (4.6.2)

we of course have
B|v〉 = 3|v〉, B|w〉 = 3|w〉. (4.6.3)

But, by the linearity of matrix operations (see Section 3.2 and Section 3.1),
we also have

B(a|v〉+ b|w〉) = aB|v〉+ bB|w〉 = 3(a|v〉+ b|w〉), (4.6.4)

so that any linear combination of |v〉 and |w〉 is also an eigenvector of B with
eigenvalue 3.

Definition 4.6.1 Eigenspace. An eigenspace is the set of all vectors with
the same eigenvalue. ♦

The eigenspace ofB corresponding to eigenvalue 3 is therefore a 2-dimensional
vector space (a plane), rather than the 1-dimensional eigenspaces (lines) that
occur when the eigenvalues are distinct.



Chapter 5

Special Matrices

5.1 Commuting Matrices
Commuting operators play a very special role in the theory of quantum me-
chanics.
Definition 5.1.1 Commutator. The commutator of two matrices (or
operators) is defined by the combination

[M,N ] ≡MN −NM . (5.1.1)

When acting on a vector, the commutator tells you about the difference between
operating in one order and operating in the other order. If the order doesn’t
matter, then the commutator is zero, [M,N ] = 0, and the operators M and N
are said to commute. ♦

Commuting operators have the same (non-degenerate) eigenvectors.
Suppose two operators M and N commute, [M,N ] ≡MN −NM = 0. Then
if M has an eigenvector |v〉 with non-degenerate eigenvalue λv, we will show
that |v〉 is also an eigenvector of N .

M |v〉 = λv|v〉 (5.1.2)
N (M |v〉) = M (N |v〉) = λv (N |v〉) (5.1.3)

The last equality shows that N |v〉 is also an eigenvector of M with the
same non-degenerate eigenvalue λv. But if this is true, then N |v〉 must be
proportional to |v〉, i.e.

N |v〉 = α|v〉 (5.1.4)
which is just the statement that |v〉 is also an eigenvector of N with eigenvalue
α.

Note that if λv were a degenerate eigenvalue, then we would not have been
able to assume that N |v〉 is proportional to |v〉.

5.2 Definition of Hermitian Matrices
Definition 5.2.1 Hermitian Matrices. On an n×m matrix, N , you can
take the Hermitian adjoint (usually denoted with a dagger, †) which means
take both the (complex) conjugate Section 2.3 and the transpose Section 3.4,
in either order

N† = N∗T . (5.2.1)

57
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Two uses of the word “Hermitian”. You should not confuse the two
uses of the word Hermitian. One describes an operation that you can do to
matrices–to take the Hermitian adjoint (an action), the other describes a
matrix with a particular form–a Hermitian matrix (an object).

An n×n (square) matrixM isHermitian if it equals its conjugate transpose,
that is, if

M† = M . (5.2.2)

If a matrix M is both Hermitian and real, then M is called a symmetric
matrix. An anti-Hermitian matrix is one for which the Hermitian adjoint
is the negative of the matrix:

M† = −M . (5.2.3)

A matrix which is both anti-Hermitian and real is called antisymmetric. ♦

Identifying Hermitian Matrices. For example, let M be a 2× 2 complex
matrix, so that

M =
(
a b
c d

)
, (5.2.4)

with a, b, c, d ∈ C, and its Hermitian adjoint is

M† =
(
a∗ c∗

b∗ d∗

)
, (5.2.5)

If M is Hermitian, then M† = M , so, we must have

a∗ = a, b∗ = c, d∗ = d, (5.2.6)

i.e. a and d are real and c is the complex conjugate of b.
In index notation, if the components of M are denoted mij , then M is

Hermitian if and only if
mij = m∗ji (5.2.7)

for all i, j. (See also, Section 3.5.) Thus, the diagonal elements of a Hermitian
matrix must be real, and the off-diagonal elements come in complex conjugate
pairs, paired symmetrically across the main diagonal.

An Important Special Case of Hermitian Matrices. An important
special case of a Hermitian matrix can be constructed from any column vector
v by computing its outer square, which in traditional vector notation would be
written vv† and in bra/ket notation would be written |v〉〈v|. (See Section 5.6
for a description of how such operators are used to produce projections.)

5.3 Properties of Hermitian Matrices
The eigenvalues and eigenvectors of Hermitian matrices Section 5.2 have some
special properties.

The eigenvalues of a Hermitian matrix must be real. To see why this
relationship holds, start with the eigenvector equation

M |v〉 = λ|v〉 (5.3.1)
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and multiply on the left by 〈v| (that is, by v†):

〈v|M |v〉 = 〈v|λ|v〉 = λ〈v|v〉. (5.3.2)

But we can also compute the Hermitian conjugate (that is, the conjugate
transpose) of (5.3.1), which is

〈v|M† = 〈v|λ∗. (5.3.3)

Using the fact that M† = M , and multiplying by |v〉 on the right now yields

〈v|M |v〉 = 〈v|λ∗|v〉 = λ∗〈v|v〉. (5.3.4)

Comparing (5.3.2) with (5.3.4) now shows that

λ∗ = λ (5.3.5)

as claimed.

Eigenvectors corresponding to different eigenvalues must be orthog-
onal. The argument establishing this relationship is similar to the one above.
Suppose that

M |v〉 = λ|v〉, (5.3.6)
M |w〉 = µ|w〉. (5.3.7)

Then
〈v|λ|w〉 = 〈v|M |w〉 = 〈v|µ|w〉 (5.3.8)

or equivalently
(λ− µ)〈v|w〉 = 0. (5.3.9)

Thus, if λ 6= µ, |v〉 must be orthogonal to |w〉.

Repeated Eigenvalues. In the case of repeated eigenvalues, it is possible
to make a basis orthogonal using a process called Gram-Schmidt orthogo-
nalization. (This amounts to simply subtracting off the parts of a given basis
that are not orthogonal.)

To Remember. It is always possible to find an orthonormal basis of eigen-
vectors for any Hermitian matrix.

Sensemaking 5.3.1 Properties of Anti-Hermitian Matrices. Repeat
the two proofs above to find similar properties for anti-Hermitian matrices.
Hint 1. Don’t forget to use M† = −M .
Hint 2. Don’t forget to complex conjugate the eigenvalue, where necessary.
Answer. The eigenvalues are pure imaginary. The eigenvectors corresponding
to different eigenvalues are orthogonal.

5.4 Unitary Matrices
An n×n matrix U is unitary if its Hermitian adjoint (i.e. conjugate transpose)
is equal to its inverse, that is, if

U† = U−1, (5.4.1)
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in which case,
U†U = I = UU†. (5.4.2)

If U is both unitary and real, then U is called an orthogonal matrix.
Working out the condition for unitarity, it is easy to see that the rows (and

similarly the columns) of a unitary matrix U form a (complex) orthonormal
basis. Using bra/ket notation, and writing |vi〉 for the columns of U , then

〈vi|vj〉 = δij . (5.4.3)

We will use unitary matrices in four ways:

1. Unitary matrices preserve the norm of vectors, Section 5.5

2. Unitary operators can be used to change the basis in a vector space,
Section 5.7

3. Evolution operators are unitary, Section 5.12

4. Some types of symmetry operators are unitary, Section 5.13

5.5 Properties of Unitary Matrices
The eigenvalues and eigenvectors of unitary matrices have some special proper-
ties.

The eigenvalues of a unitary matrix must be unimodular. If U is
unitary, then UU† = I. Thus, if

U |v〉 = λ|v〉 (5.5.1)

then also
〈v|U† = 〈v|λ∗. (5.5.2)

Combining (5.5.1) and (5.5.2) leads to

〈v|v〉 = 〈v|U†U |v〉 = 〈v|λ∗λ|v〉 = |λ|2〈v|v〉 (5.5.3)

Assuming λ 6= 0, we thus have

|λ|2 = 1. (5.5.4)

Can the eigenvalue be zero? A matrix with zero as an eigenvalue cannot
have an inverse, so the assumption λ 6= 0 holds automatically for unitary
matrices.

Thus, the eigenvalues of a unitary matrix are unimodular, that is, they
have norm 1, and hence can be written as eiα for some α.

Eigenvectors corresponding to different eigenvalues must be orthog-
onal. Just as for Hermitian matrices, eigenvectors of unitary matrices corre-
sponding to different eigenvalues must be orthogonal. The argument is similar
to the proof for Hermitian matrices in Section 5.3. Suppose that

U |v〉 = eiλ|v〉, (5.5.5)
U |w〉 = eiµ|w〉. (5.5.6)
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We’d like to evaluate 〈v|U |w〉 two ways. We know what U |w〉 is, but not yet
what 〈v|U is. So we first compute

|v〉 = U†U |v〉 = U†
(
eiλ|v〉

)
= eiλ

(
U†|v〉

)
(5.5.7)

from which it follows that
U†|v〉 = e−iλ|v〉 (5.5.8)

whose conjugate is
〈v|U = 〈v|eiλ. (5.5.9)

We can now compute

〈v|eiλ|w〉 = 〈v|U |w〉 = 〈v|eiµ|w〉 (5.5.10)

so that
(eiλ − eiµ)〈v|w〉 = 0. (5.5.11)

Thus, if eiλ 6= eiµ, |v〉 must be orthogonal to |w〉.
As with Hermitian matrices, this argument can be extended to the case

of repeated eigenvalues; it is always possible to find an orthonormal basis of
eigenvectors for any unitary matrix.

5.6 Projection Operators
A special class of operators, called projection operators, are particularly
useful for finding the component of a vector along a particular direction and
for changing basis.

Definition 5.6.1 Projection Operator. A operator Pv that gives the same
result when acting on any vector twice in succession as when it acts just once,
i.e.

P 2
v = Pv, (5.6.1)

is called a projection operator. ♦

Bra-Ket Representation of Projection Operators. Given any normal-
ized vector |v〉, that is, a vector satisfying

〈v|v〉 = 1, (5.6.2)

we can show that a projection operator Pv can be constructed by taking the
outer product, see Section 3.3, of the vector with its Hermitian adjoint.

Pv = |v〉〈v|. (5.6.3)

The proof is a straightforward calculation using the norm condition (5.6.2)

P 2
v = (|v〉〈v|)(|v〉〈v|)

= |v〉(〈v|v〉)〈v|
= |v〉〈v|
= Pv. (5.6.4)
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Using Projection Operators to Implement Projections. Using meth-
ods analogous to (5.6.4), we show that Pv takes |v〉 to itself, that is,

Pv|v〉 = (|v〉〈v|)|v〉
= |v〉(〈v|v〉)
= |v〉;

and takes any vector w that is orthogonal to v, (i.e. 〈v|w〉 = 0), to zero,

Pv|w〉 = (|v〉〈v|)|w〉
= |v〉(〈v|w〉)
= 0.

This is what we mean when we say Pv projects any vector along |v〉.

Activity 5.6.1 Matrix Representations of Projection Operators. Find
the matrix representation of the projection operators corresponding to the
vectors:

|+〉 .=
(

1
0

)
,

|+〉y
.= 1√

2

(
1
i

)
,

|+〉9
.=
(

a
beiφ

)
.

Hint 1. The answer should be a square matrix. If you are getting a positive,
real number, you are incorrectly taking the inner-product rather than the outer
product. Check the order of your matrices.
Hint 2. Don’t forget to complex conjugate when you turn the ket into a bra.

5.7 Change of Basis (Bra-Ket Notation)
Definition 5.7.1 The Completeness Relation. If we have an orthonormal
basis {|v〉, |w〉, . . . }, the definition of orthonormality tells us that

〈v|v〉 = 1 = 〈w|w〉 = . . . ,

〈v|w〉 = 0 = . . . . (5.7.1)

Then, we can build projection operators (see Section 5.6) from this orthonormal
basis

|v〉〈v|, |w〉〈w|, . . . . (5.7.2)

If we add up all these projections, we obtain the identity matrix, that is,

I = |v〉〈v|+ |w〉〈w|+ . . . . (5.7.3)

Equation (5.7.3) is called the completeness relation. ♦

Question 5.7.2 Check that (5.7.3) is indeed the identity matrix by having it
act on the arbitrary vector α|v〉+ β|w〉+ . . . .

Using the Identity Matrix to Change Basis. If you know a vector |ψ〉 =
α|vi〉+ β|wi〉+ . . . in some initial basis

{|vi〉, |wi〉, . . . } (5.7.4)
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and want to find it in some final basis

{|vf 〉, |wf 〉, . . . } , (5.7.5)

then just use the strategy multiply by one in a complicated form, that is, in
this case, act on the vector with the identity matrix in the form (5.7.3). The
general calculation goes like this:
Don’t be intimidated by the sea of algebra. Just FOIL like mad, rearrange
terms, and keep track of which terms are vectors and which are scalars.

|ψ〉 = I|ψ〉
= (|vf 〉〈vf |+ |wf 〉〈wf |+ . . . ) (α|vi〉+ β|wi〉+ . . . )
= |vf 〉 (α〈vf |vi〉+ β〈vf |wi〉+ . . . )

+ |wf 〉 (α〈wf |vi〉+ β〈wf |wi〉+ . . . )
+ . . . (5.7.6)

Of course, this method is only useful if you already know, or can quickly find,
the change of basis elements, e.g. 〈vf |vi〉, between the initial and final basis
vectors.

5.8 Diagonalization: Using Eigenvectors as a Nat-
ural Basis

The Eigenvectors of Hermitian Matrices form a Natural Basis. In
Section 5.3, we showed that the eigenvectors of Hermitian (and anti-Hermitian)
matrices are orthogonal, or in the case of degeneracy, can be chosen to be
orthogonal. In Section 5.5, we showed the same for unitary (and anti-unitary)
matrices.

A much deeper question is whether an n × n matrix actually has a full
n eigenvectors. The spectral theorem guarantees that this is the case for
Hermitian, anti-Hermitian, unitary, and anti-unitary matrices, but the proof is
well beyond the scope of this book. The technical language for this is that the
eigenvectors of these matrices form a complete set, i.e. they span the entire
vector space.

Since eigenvectors can always be normalized, see Section 3.5, we see that
the eigenvectors of these special matrices form an orthonormal basis.

The next activity explores one of the important implications of using the
eigenvectors as a natural basis.

Activity 5.8.1 Find the Form of a Hermitian Operator in Its Own
Eigen-Basis. Consider the Hermitian operator A. In a coordinate system
where its eigenvectors are the standard basis (4.5.4), name its components

A
.=
(
a11 a12
a21 a22

)
. (5.8.1)

Show that the eigenvalue/eigenvector equation (4.1.1) requires that the diagonal
components are the eigenvalues and the off-diagonal elements are zero.
Hint. One of the eigenvalue/eigenvector equations states that(

a11 a12
a21 a22

)(
1 0

)
= λ1

(
1 0

)
. (5.8.2)

Compare the left- and right-hand sides of this equation.
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In the activity above, you showed that, for the simplest example of a 2× 2
matrix, in a coordinate system where the eigenvectors of a Hermitian matrix are
the standard basis, the Hermitian matrix is diagonal and its diagonal elements
are just the eigenvalues. This result is true, in general, for any size matrix that
is Hermitian, anti-Hermitian, unitary, or anti-unitary.

The process of diagonalization is the process of changing basis to the
natural eigen-basis of such an operator. To actually find the change-of-basis
operation requires some algebra (which we will not discuss further here). But
scientists often casually say that they are ‘‘diagonalizing’’ a matrix when all
they really do is state the diagonal matrix that is the result.

To Remember. A Hermitian matrix is diagonal in its own eigen-basis and,
in this coordinate system, its eigenvectors are just the standard basis (4.5.4).
Many calculations are simplified by using this basis.

5.9 Matrix Decompositions
UNDER CONSTRUCTION

Returning to our special matrices, we have shown that both Hermitian and
unitary matrices admit orthonormal basis of eigenvectors. So suppose that

M |v〉 = λ|v〉,M |w〉 = µ|w〉, ... (5.9.1)

where |v〉, |w〉, ... satisfy (5.7.1). Then (5.7.3) is satisfied, and a similar
argument shows that

M = λ|v〉〈v|+ µ|w〉〈w|+ ... , (5.9.2)

so that we can expand any Hermitian or unitary matrix in terms of its eigenvalues
and the projection operators formed from its eigenvectors.

5.10 Parameterization of Hermitian and Unitary
Matrices

Any 2× 2 Hermitian matrix, M , can be written in the form

M =
(
t+ z x− iy
x+ iy t− z

)
(5.10.1)

with x, y, z, t ∈ R. Looking at the matrix coefficients of these variables, we can
write

M = t I + xσx + y σy + z σz (5.10.2)

thus defining the three matrices

σx =
(

0 1
1 0

)
, (5.10.3)

σy =
(

0 −i
i 0

)
, (5.10.4)

σz =
(

1 0
0 −1

)
, (5.10.5)
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which are known as the Pauli matrices. The Pauli matrices {σm} have
several interesting properties. First of all, each Pauli matrix squares to the
identity matrix, is tracefree, and of course is Hermitian:

σ2
m = I, (5.10.6)

tr(σm) = 0, (5.10.7)
σ†m = σm. (5.10.8)

Also of interest is that these matrices anticommute, and that the product
of any two is the third, for instance:

σxσy = i σz = −σyσx. (5.10.9)

Thus, any 2×2 Hermitian matrix can be written as a real linear combination
of the Pauli matrices and the identity matrix.

What about 2× 2 unitary matrices? Now we must have MM† = I, that is,(
a b
c d

)(
a∗ c∗

b∗ d∗

)
=
(
|a|2 + |b|2 ac∗ + bd∗

ca∗ + db∗ |c|2 + |d|2
)

= I. (5.10.10)

The normalization conditions

|a|2 + |b|2 = 1 = |c|2 + |d|2 (5.10.11)

allow us to write

a = eiα cos θ, (5.10.12)
b = eiβ sin θ, (5.10.13)
c = eiγ sinφ, (5.10.14)
d = eiδ cosφ, (5.10.15)

where we can assume that θ, φ ∈ [0, π2 ]. The remaining condition becomes

0 = ac∗ + bd∗ = ei(α−γ) cos θ sinφ+ ei(β−δ) sin θ cosφ (5.10.16)

which forces in general

tan θ = tanφ, (5.10.17)
ei(α−γ) = −ei(β−δ) (5.10.18)

(with the second condition unnecessary if θ = 0 or θ = π
2 ), so that

θ = φ, (5.10.19)
α+ δ = β + γ − π. (5.10.20)

Some special cases are α = 0 = δ, β = π
2 = γ, corresponding to

Ux =
(

cos θ i sin θ
i sin θ cos θ

)
, (5.10.21)

α = 0 = δ, β = 0, γ = π, corresponding to

Uy =
(

cos θ sin θ
− sin θ cos θ

)
, (5.10.22)

and θ = 0, δ = α, corresponding to

Uz =
(
eiθ 0
0 e−iθ

)
, (5.10.23)

where we have replaced α by θ for consistency.



CHAPTER 5. SPECIAL MATRICES 66

5.11 Matrix Exponentials
How do you exponentiate matrices?

Recall the power series

eiθ = 1 + iθ − θ2

2! − i
θ3

3! + ... (5.11.1)

which can famously be used to prove Euler’s formula, namely

eiθ = cos θ + i sin θ. (5.11.2)

We can use this same strategy to exponentiate matrices, by using the
corresponding power series. We therefore define

eiMθ = I + iMθ − M2θ2

2! − iM
3θ3

3! + ... (5.11.3)

Let’s consider some special cases. First consider a matrix M satisfying
M2 = I, such as the Pauli matrices, see Section 5.10. For any such matrix, we
have

eiMθ = I + iMθ − θ2

2! − i
Mθ3

3! + ...

= I cos θ + iM sin θ (5.11.4)

For example,

eiσxθ = I cos θ + iσx sin θ =
(

cos θ i sin θ
i sin θ cos θ

)
= Ux, (5.11.5)

and similarly

eiσyθ = Uy, (5.11.6)
eiσzθ = Uz. (5.11.7)

In fact, exponentiating a Hermitian matrix in this way always yields a
unitary matrix, since (

eiMθ
)† = e−iM

†θ, (5.11.8)

as can be verified by working term-by-term with the power series. The converse
is also true; any unitary matrix U can be written as eiMθ for some Hermitian
matrix M .

Remarkably, the eigenvector decompositions derived in the last section
behave very nicely under exponentiation, as we now show.

Let M be Hermitian, and recall that we can expand M in terms of its
eigenvectors and eigenvalues as

M = λ|v〉〈v|+ µ|w〉〈w|+ ... . (5.11.9)

Notice that
M2 = λ2|v〉〈v|+ µ2|w〉〈w|+ ... . (5.11.10)

since all cross terms cancel, and since each projection matrix squares to itself.
Furthermore, recall that the projections add up to the identity matrix, that is,

I = |v〉〈v|+ |w〉〈w|+ ... , (5.11.11)
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Putting this all together, we see that

eiMθ = eiλθ|v〉〈v|+ eiµθ|w〉〈w|+ ... , (5.11.12)

which shows explicitly how to relate the decompositions of Hermitian matrices
and their corresponding unitary matrices. This remarkable result is much less
surprising when expanded in terms of the given orthonormal basis, in which
case M is diagonal, so that exponentiating the matrix is just exponentiating
each of the eigenvalues.

5.12 Evolution Equation
The simplest non-trivial ode is the first-order linear ode with constant coeffi-
cients:

d

dx
f(x) = af(x) (5.12.1)

with solution:
f(x) = f(0) eax (5.12.2)

We can generalize this equation to apply to solutions which are exponentials
of matrices (Section 5.11), i.e.:

M(x) = M(0)eAx (5.12.3)

is a solution of:
d

dx
M(x) = AM(x) (5.12.4)

where A is a suitable constant matrix. (Show that if A is anti-Hermitian, then
M(x) is unitary.)

Example Problem: Find the matrix differential equation that has the
solution:

|ψ(x, t)〉 = |ψ(x, 0)〉 eiHt~ (5.12.5)

where H is Hermitian. Do you recognize your differential equation?

5.13 Symmetry Operations
COMING SOON



Chapter 6

Differentials

6.1 Review of Single Variable Differentiation
Theory. Differentiation is about how small changes in one quantity influence
other quantities. This “ratio of small changes” viewpoint is often helpful in
setting up problems involving differentiation, and will be especially useful later
for partial derivatives.

For example, how do you determine how fast are you going? If you know
how far you went during a given time interval, you can divide these quantities
to determine your average speed during that interval. Repeat this computation
over shorter and shorter time periods. Those are still, strictly speaking, average
speeds, but they are better and better approximations to your instantaneous
rate of change.

Equivalently, draw a graph showing your position as a function of time. If
you connect any two points on this graph, the horizontal “distance” between
them represents the amount of time it took to get from one to the other, and the
vertical “distance” between them represents how far apart they are. Dividing
these two quantities again yields your average speed for that part of your
journey, which is also clearly the slope of the secant line connecting the two
points. Repeat this computation over shorter and shorter time periods, and
the slope of the secant line becomes a better and better approximation to the
slope of the tangent line, which gives the instantaneous rate of change.

In either case, the construction outlined above yields your speed at a single
point, but you can repeat the construction at every point. Derivatives are
functions!

Limits. The constructions above are usually expressed in terms of limits.
If your position is given by y = 2x2, then your speed can be computed by
calculating

dy

dx
= lim

∆x→0

∆y
∆x = lim

∆x→0

2(x+ ∆x)2 − 2x2

∆x = 4x (6.1.1)

where some algebra is required to obtain the final answer. The notation dy
dx

emphasizes that derivatives are built from ratios of the small quantities ∆y and
∆x. Note the dependence on x; your speed is not constant.

Practice. Limits are rarely used when computing derivatives in practice.
Instead, one derives and then typically memorizes a few basic rules, such as

68
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the Power Rule, which says that

d

dx
(xn) = nxn−1 (6.1.2)

and the Product Rule, which says that

d

dx
(fg) = f

dg

dx
+ g

df

dx
(6.1.3)

where f and g are arbitrary functions of x, that is, f = f(x) and g = g(x).

6.2 Derivative Notation
There are two traditional notations for derivatives, which you have likely already
seen.

Newton/Lagrange/Euler : In this notation, the primary objects are functions,
such as f(x) = x2, and derivatives are written with a prime, as in f ′(x) = 2x.

This notation is often referred to as “Newtonian”, but Newton actually
used dots rather than primes, and used t rather than x as the independent
variable. The use of primes and x is often attributed to Lagrange, but was in
fact introduced by Euler.

Leibniz: In this notation, due to Leibniz, the primary objects are relation-
ships, such as y = x2, and derivatives are written as a ratio, as in dy

dx = 2x.
These notations extend naturally to higher derivatives. We summarize the

disscussion so far as follows:
Notation 6.2.1 Derivatives. There are several different notations for
derivatives in common use. You should be comfortable with all of them.
Leibniz’s notation for derivatives is:

dy

dx
,

d2y

dx2 ,
d3y

dx3 , . . .
dny

dxn
(6.2.1)

Lagrange’s notation for the same derivatives is: 1

y′, y′′, y′′′, . . . y(n) (6.2.2)

It is also common to set y = f(x) and write f ′(x) instead of y′, etc.
Newton used dots instead of primes (and t as the independent variable,

rather than x):
ẏ, ÿ, . . . y(n) (6.2.3)

All of these notations work fine for functions of a single variable. However,
Leibniz notation is better suited to situations involving many quantities that
are changing, both because it keeps explicit track of which derivative you took
(“with respect to x”), and because it emphasizes that derivatives are ratios.
Among other things, this helps you get the units right; mph are a ratio of miles
to hours!

6.3 Thick Derivatives
In Section 6.1, we briefly discussed representing derivatives symbolically (as
ratios), graphically (as slopes), and even verbally (as the ratio of small quantities).

1This notation was originally introduced by Euler.
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What about numerically or experimentally? 1

Suppose you record your position every few minutes. You can make a table
of your data, showing times and positions. How fast were you going?

Well, you can divide the various distances traveled by the time it took, but
the results are clearly average speeds for each interval. What if you were to
record your position every few seconds? Every few microseconds?

Mathematicians would argue that this question is still poorly posed: Since
you only have discrete, numerical data, no limits can be taken, so you can only
ever compute average speeds. On the other hand, in everyday circumstances the
accuracy obtained with data taken every few microseconds is surely sufficient.

In the real world, the important question is not whether the computation
yields an average speed or an instantaneous speed, but rather whether the
average is “good enough”, where of course what’s good enough depends on the
context.

Rather than engage in a pedantic discussion of whether one can in principle
compute derivatives from numerical or experimental data, we choose to embrace
such computations due to their importance in applications. We therefore
introduce the concept of “thick” derivatives to encompass both instantaneous
rates of change and average rates of change that are “good enough”. Again,
this notion depends on the context; a detailed analysis properly belongs to the
fields of numerical analysis and data analysis. Nonetheless, we will not quibble
about referring to the results of measurements over suitably small intervals as
“derivatives”.

For further discussion, see [2].

6.4 Differentials
Both of the derivative notations described in Section 6.2 distinguish between
dependent quantities (f(x) or y) and the independent variable (x). However,
in the real world one doesn’t always know in advance which variables are
independent. We therefore go one step further, and express derivatives in terms
of differentials.

1We would argue that these are not quite the same thing, since experimental computations
are limited by measurement error, whereas numerical computations are limited by roundoff
error, a fundamentally different concept.
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Figure 6.4.1 Linear approximation using the tangent line.
The tangent line to the graph of y = f(x) at the point (x0,y0) is given by

y − y0 = m (x− x0) (6.4.1)

where the slope m is of course just the derivative df
dx

∣∣
x=x0

. It is tempting to
rewrite the equation of the tangent line as

∆y = df

dx
∆x (6.4.2)

which is also used for linear approximation in the form

∆f = f(x+ ∆x)− f(x) ≈ df

dx
∆x (6.4.3)

as shown in Figure 6.4.1. Regarding ∆x as small, we rewrite (6.4.3) in the form

df = df

dx
dx (6.4.4)

where the differential df can be interpreted as the corresponding small change
in f .

The intuitive idea behind differentials is to consider the small quantities
“dy” and “dx” separately, with the derivative dy

dx denoting their relative rate
of change. So rather than either of the traditional expressions for derivatives
(see Section 6.2), if y = x2 we write

dy = 2x dx. (6.4.5)

More generally, if y is any function of x, then the derivative dy
dx relates the

differentials dy and dx via
dy = dy

dx
dx. (6.4.6)

You can safely think of (6.4.5) as a sufficiently small quantity, or as the
numerator of Leibniz notation, or as shorthand for a limit argument, or in
terms of differential forms, or nonstandard analysis, or ...; it doesn’t matter,
they all give the same equations.
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6.5 Rules for Differentials
We can eliminate y from (6.4.5) by writing

d(x2) = 2x dx, (6.5.1)

and we can go even further by replacing the ubiquitous variable x by any
physical or geometric quantity, such as u. The beauty of this approach is that
differentiation is easy once you have convinced yourself of a few basic rules.

Let’s start with some simple functions. For instance, the power rule for
derivatives says that

d

du
(un) = nun−1 (6.5.2)

which in differential notation becomes d(un) = nun−1 du.

Notation. We use u and later v to denote any quantity. It might be the case
that u = x, or that u = f(x), or that u = f(x, y), or that u depends on other
quantities. it doesn’t matter.

Usage. “Taking the differential” or “zapping with d” is an operation; d itself
is an operator, that acts on functions.

Applying this construction to the derivatives of elementary functions, we
obtain the basic differentiation formulas in differential form, namely:

d (un) = nun−1 du,

d (eu) = eu du,

d(sin u) = cosu du,
d(cosu) = − sin u du,

d(ln u) = 1
u
du,

d(tan u) = 1
cos2 u

du.

So how do we use these formulas to compute derivatives?

6.6 Properties of Differentials
Both derivatives and differentials (and, in fact, all forms of differentiation that
you may learn about in the future) satisfy two basic properties: linearity and
the product rule.

Linearity. You probably use a property of ordinary derivatives, called lin-
earity, without even thinking about it. Linearity meansthat the derivative of
a sum is the sum of the derivatives (distributivity), and constants pull through
the derivative. For example:

d

dx
(3x2 + ekx) = d

dx
(3x2) + d

dx
(ekx) = 6x+ kekx. (6.6.1)

This same property applies to differentials. If u and v are any two quantities,
then linearity says that

d(au+ bv) = a du+ b dv (6.6.2)
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where a and b are constants.
In these expressions, u and v may or may not be related. For example, if

u = x2 and v = ekx both depend on x, then

d(3x2 + ekx) = d(3x2) + d(ekx),
= 6x dx+ kekx dx = (6x+ kekx) dx. (6.6.3)

Product Rule. The product rule for differentials follows the same pattern
as the product rule for ordinary derivatives, namely

d(uv) = u dv + v du. (6.6.4)

As an example, consider the ideal gas law

pV = nRT (6.6.5)

relating the pressure p, volume V , and temperature T of an ideal gas, where
R is a physical constant, and n is the number of moles of gas, which we will
assume remains constant in this example. “Zapping” (6.6.5) with d, the product
rule yields

d(pV ) = p dV + V dp = nRdT. (6.6.6)

Chain Rule. In Leibniz notation, the chain rule for ordinary derivatives is:

dy

dx
= dy

du

du

dx
. (6.6.7)

From the point of view of the ratio of small changes, (6.6.7) is just a statement
about the ordinary rules for manipulating fractions.

For differentials, the chain rule becomes:

dy = dy

du

du

dx
dx. (6.6.8)

We are assuming that dy and dx are “small enough” that we can treat the
relationships between y and u and between u and x as linear, so the two rates
of change in (6.6.8) just multiply.

The product of two rates of change in (6.6.8) is like doing a double change of
units.

N
km

hr
= N

km

hr
× 1000 m

km
× 1

3600
hr

sec
= N

1000
3600

m

sec

Suppose you want to find the derivative of Q = ln sin(θ2). How many
functions are there here? Three; let’s consider each in turn.

The first, “outer” function is the logarithm. Logarithm of what? Give it a
name! So we set u = sin(θ2), and similarly v = θ2. We now have Q = ln u and
u = sin v, so that

dQ = d(ln u) = 1
u
du = 1

u
cos v dv = cos v

u
2θ dθ. (6.6.9)

Dividing by dθ yields an expression for the derivative of Q with respect to θ,
namely

dQ

dθ
= cos v

u
2θ = 2θ cot(θ2) (6.6.10)

where it is customary to expand u and v in terms of θ in the final answer.
This process is often described as “peeling an onion”, with each layer

corresponding to a different function, represented here by a different variable.
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Inverse Functions. The rule for the derivative of inverse functions is

dx

dy
= 1
dy/dx

which in differential notation becomes

dx = 1
dy/dx

dy.

As an example, we derive the derivative formula for logarithms from that
for the exponential function. If u = ln v, then v = eu; both of these equations
represent the same relationship between u and v. If we don’t know how to
differentiate the first expression, we can differentiate the second, yielding

dv = d(eu) = eudu = v du (6.6.11)

from which it follows immediately that

du = 1
v
dv (6.6.12)

which was the desired derivative formula for the inverse of exponentation. Yes,
it’s that easy!

Implicit Differentiation. Implicit differentiation can be accomplished in
differential notation simply by “zapping” every term in an equation with d, that
is, by taking the differential (not the derivative) of both sides of the equation,
using the rules above.

For example, consider the problem of finding the slope of the tangent line
to a circle at an arbitrary point. We have

x2 + y2 = a2 (6.6.13)

with a constant, and zapping each term with d yields

2x dx+ 2y dy = 0 (6.6.14)

from which it is easy to derive

dy

dx
= −x

y
(6.6.15)

which can then be evaluated at the desired point.
Note the shift in emphasis when using differentials to compute derivatives

in these examples:

• We didn’t solve for y (or x); no attempt was made to identify dependent
and independent variables.

• At each stage, “zapping” with d produced a new term with d, which is a
differential, not a derivative.

• The physical answer is almost never a differential, but rather a derivative,
namely the ratio of two differentials.
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6.7 Substitution
The formulas in differential form given at the end of Section 6.5 not only
summarize the basic differentiation formulas, but also the basic integration
formulas! In each case, one can integrate both sides of the expression, then use
the Fundamental Theorem of Calculus, which says that∫

df = f (6.7.1)

which can be interpreted as a statement about antiderivatives. For example,
knowing that

d(un) = nun−1 du (6.7.2)
immediately tells us that

un =
∫
d(un) =

∫
nun−1 du (6.7.3)

which is normally rewritten in the form∫
um du = um

m+ 1 (6.7.4)

where m = n+ 1.
Some of the differentiation rules introduced in Section 6.6 also lead to

integration rules. For example, the product rule in the form

d(uv) = u dv + v du (6.7.5)

immediately yields

uv =
∫
d(uv) =

∫
u dv +

∫
v du (6.7.6)

which is normally rewritten in the form∫
v du = uv −

∫
u dv (6.7.7)

where it is known as integration by parts.
But the most important of these integration rules is the analog of the chain

rule. Multiplying both sides of

du = du

dx
dx (6.7.8)

by an arbitrary function f and then integrating yields first

f du = f
du

dx
dx (6.7.9)

and then ∫
f du =

∫
f
du

dx
dx (6.7.10)

which is the technique known as substitution. 1 For example, to evaluate the
integral

Q =
∫

sin2 θ cos θ dθ (6.7.11)

it is enough to notice that d sin θ = cos θ dθ, so that the integral becomes

Q =
∫

sin2 θ d(sin θ) = 1
3 sin3 θ (6.7.12)

where the substitution u = sin θ has been made implicitly.
1This technique is often referred to as “u-substitution” even when there is no variable

named u.
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6.8 Differentials: Summary
We summarize here both the basic differentiation formulas from Section 6.5
and the fundamental rules from Section 6.6, in differential form. We have:

d (un) = nun−1 du,

d (eu) = eu du,

d(sin u) = cosu du,
d(cosu) = − sin u du,

d(ln u) = 1
u
du,

d(tan u) = 1
cos2 u

du,

d(u+ cv) = du+ c dv,

d(uv) = u dv + v du,

d
(u
v

)
= v du− u dv

v2 ,

where c is a constant. Each of these rules can be reinterpreted as a derivative
rule by deviding both sides by du, and as an integration rule by integrating both
sides (and using the Fundamental Theorem of Calculus in the form

∫
df = f).

We have added the quotient rule at the end of this list, which can be obtained
quickly from the power and product rules by writing u

v = u 1
v . (Similarly, any

one rule for differentiating a trigonometric function can be used to derive the
others, and, as we saw in Section 6.6, the rule for the exponential function can
be used to derive the rule for logarithms – or vice versa. Nonetheless, each of
these rules is used often enough that it is helpful to include them all.)

We reiterate that there is no need to add the chain rule to this list, nor the
rules for inverse functions or implicit differentiation.

Finally, a nice mnemonic to help you avoid mixing up differentials with
derivatives, especially at first, is to think of terms involving d as small. Deriva-
tives are the ratios of small quantities, but they are not themselves small. And
each term in an equation must have the same character, big or small. Put
differently, the ds must balance; (infinitesimally) small quantities can never be
equal to (finite) big quantities.

6.9 The Multivariable Differential
In Section 6.4, we considered the tangent line to the graph of a function f of
one variable. What if f is a function of more than one variable?

Consider the tangent plane to the graph of z = f(x, y) at the point (x0,y0,z0).
What is the height difference ∆z between two points on the tangent plane?
Hold a piece of paper at an arbitrary angle in front of you, and imagine moving
on it first to the right, then directly forwards. How high did you go? The sum
of the height differences in each step. How big are these height differences?
As above, they are precisely the horizontal distance traveled multiplied by the
appropriate slope.

In other words, the equation of the tangent plane is given by

z − z0 = mx (x− x0) +my (y − y0) (6.9.1)

where mx and my are the slopes in the x and y directions. But these slopes
are (by definition) the partial derivatives of f with respect to x and y (at the
given point).
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In the xy-plane, the partial derivative of f with respect to x is written as
∂f
∂x , and means “the derivative of f with respect to x with y held constant”. In
some contexts, it is necessary to state explicitly what variables are being held
constant, in which case this partial derivative may be written as

(
∂f
∂x

)
y
. Make

sure you distinguish between d and ∂; writing the letter “d” so that it looks
like a ∂ is not correct mathematics.

Returning to our graph, we can therefore write the equation of the tangent
plane as

∆z = ∂f

∂x
∆x+ ∂f

∂y
∆y (6.9.2)

which leads to the following expression for the differential of f

df = ∂f

∂x
dx+ ∂f

∂y
dy (6.9.3)

which again can be thought of as the small change in f corresponding to small
changes in x and y. Similar expressions hold for functions of more than two
variables.

Notice that there is nothing special about the variable names x and y. If f
is a function of any two parameters α and β, then we have a formula equivalent
to (6.9.3)), namely

df = ∂f

∂α
dα+ ∂f

∂β
dβ (6.9.4)

In particular, it is not necessary for α and β to have the same dimensions.
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Chain Rule

7.1 Chain Rule
One advantage of working with differentials is that the chain rule becomes
automatic. For example, if you know the temperature T of a metal girder as a
function of position x, and you know your position as a function of time t, then
you can of course obtain temperature as a function of time by substitution.
The resulting expression could be differentiated to determine how quickly the
temperature at your location is changing as you move along the girder. But
you could also use the chain rule, starting from the differential expression

dT = dT

dx
dx (7.1.1)

and then “dividing” by dt to obtain

dT

dt
= dT

dx

dx

dt
. (7.1.2)

Equation (7.1.2) is the traditional statement of the single-variable chain rule.
Functions of several variables can be handled just as easily. For example, if

you know the termperature T as a function of position in space, and you know
your position as a function of time, then a similar computation would start
with

dT = ∂T

∂x
dx+ ∂T

∂y
dy + ∂T

∂z
dz (7.1.3)

and then “divide” by dt to obtain

dT

dt
= ∂T

∂x

dx

dt
+ ∂T

∂y

dx

dt
+ ∂T

∂z

dz

dt
. (7.1.4)

Now suppose that your position in space depends on latitude and longitude,
rather than on time. So

dx = ∂x

∂θ
dθ + ∂x

∂φ
dφ (7.1.5)

where (θ,φ) are spherical coordinates, with similar expressions holding for dy
and dz. Suppose you want to know how the temperature changes as you
walk along a line of constant latitude, that is, with φ held constant. We can
substitute (7.1.5) into (7.1.3), along with the similar expressions for dy and dz,
obtaining

dT = ∂T

∂x

(
∂x

∂θ
dθ + ∂x

∂φ
dφ

)
+ ∂T

∂y

(
∂y

∂θ
dθ + ∂y

∂φ
dφ

)
+ ∂T

∂z

(
∂z

∂θ
dθ + ∂z

∂φ
dφ

)
78
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=
(
∂T

∂x

∂x

∂θ
+ ∂T

∂y

∂y

∂θ
+ ∂T

∂z

∂z

∂θ

)
dθ +

(
∂T

∂x

∂x

∂φ
+ ∂T

∂y

∂y

∂φ
+ ∂T

∂z

∂z

∂φ

)
dφ.

But we also have
dT = ∂T

∂θ
dθ + ∂T

∂φ
dφ (7.1.6)

and by comparing coefficients we obtain

∂T

∂θ
= ∂T

∂x

∂x

∂θ
+ ∂T

∂y

∂y

∂θ
+ ∂T

∂z

∂z

∂θ
(7.1.7)

as well as a similar expression for ∂T
∂φ .

Equation (7.1.7) is the traditional statement of the multivariable chain rule.
You can easily reconstruct this expression from (7.1.3) by “dividing” by dθ, so
long as you remember to replace ordinary derivatives by partial derivatives.

7.2 Chain Rule via Tree Diagrams

Figure 7.2.1 Tree diagrams relating x, y with u, v.
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Suppose f = f(x, y). Then of course

df =
(
∂f

∂x

)
y

dx+
(
∂f

∂y

)
x

dy

where the subscripts keep track of which variables are being held constant when
taking partial derivatives. If x = x(u, v), y = y(u, v), then

dx =
(
∂x

∂u

)
v

du+
(
∂x

∂v

)
u

dv

with a similar expression holding for dy. Combining these expressions and
rearranging terms, we obtain

df =
((

∂f

∂x

)
y

(
∂x

∂u

)
v

+
(
∂f

∂y

)
x

(
∂y

∂u

)
v

)
du

+
((

∂f

∂x

)
y

(
∂x

∂v

)
u

+
(
∂f

∂y

)
x

(
∂y

∂v

)
u

)
dv.

But we also know that

df =
(
∂f

∂u

)
v

du+
(
∂f

∂v

)
u

dv.

Setting v = constant, we obtain(
∂f

∂u

)
v

=
(
∂f

∂x

)
y

(
∂x

∂u

)
v

+
(
∂f

∂y

)
x

(
∂y

∂u

)
v

(7.2.1)

with a similar expression holding for the derivative of f with respect to v.
An easy way to remember such formulas is to use a tree diagram, as shown

in the first diagram in Figure 7.2.1. To use a tree diagram, determine which
derivative you want to take, in this case the derivative of f with respect to u.
Now follow all possible paths from f to u, with each arrow corresponding to a
derivative of the “top” quantity with respect to the “bottom” quantity, and
where in each case the variable(s) not pointed to by the arrow are to be held
constant.

However, one often wants to know how to express the derivatives of f with
respect to x and y in terms of its derivatives with respect to u and v, rather
than the other way around. The argument in this case is the same, with the
roles of (x,y) and (u,v) reversed, as in the tree diagram in the second diagram
in Figure 7.2.1. This construction results in(

∂f

∂x

)
y

=
(
∂f

∂u

)
v

(
∂u

∂x

)
y

+
(
∂f

∂v

)
u

(
∂v

∂x

)
y

(7.2.2)

with a similar expression for the derivative of f with respect to y. When
comparing (7.2.2) with (7.2.1), it is important to realize that

(
∂x
∂u

)
v
and

(
∂u
∂x

)
y

are not necessarily reciprocals of each other. 1

Finally, it is possible to reinterpret (7.2.2) as a statement about derivative
operators, rather than derivatives, simply by removing f . Thus,(

∂

∂x

)
y

=
(
∂u

∂x

)
y

(
∂

∂u

)
v

+
(
∂v

∂x

)
y

(
∂

∂v

)
u

(7.2.3)

1It turns out that the partial derivatives relating (x, y) to (u, v) and vice versa can be
viewed as the components of a matrix, and that the two matrices are inverses of each other.
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where we have reordered the terms slightly. When using such expressions, you
will often need to express the derivatives on the RHS in terms of u and v alone,
rather than in terms of x and y. Having done so, it is possible to use these
expressions to determine higher-order derivative operators as well, such as the
Laplacian.

7.3 Applications of Chain Rule
When differentiating functions of several variables, it is essential to keep track
of which variables are being held fixed. As a simple example, suppose

f = 2x+ 3y (7.3.1)

for which it seems clear that
∂f

∂x
= 2 (7.3.2)

But suppose we know that
y = x+ z (7.3.3)

so that
f = 2x+ 3(x+ z) = 5x+ 3z (7.3.4)

from which it seems equally clear that

∂f

∂x
= 5 (7.3.5)

In such cases, we adopt a more precise notation, and write(
∂f

∂x

)
y

= 2,
(
∂f

∂x

)
z

= 5, (7.3.6)

where the subscripts indicate the variable(s) being held constant.
We can now prove two useful identities about partial derivatives. Suppose

that we know a relationship such as F (x, y, z) = 0, so that any of x, y, z can in
principle be expressed in terms of the other two variables. Then we have

dz =
(
∂z

∂x

)
y

dx+
(
∂z

∂y

)
x

dy

=
(
∂z

∂x

)
y

dx+
(
∂z

∂y

)
x

[(
∂y

∂z

)
x

dz +
(
∂y

∂x

)
z

dx

]

=
[(

∂z

∂x

)
y

+
(
∂z

∂y

)
x

(
∂y

∂x

)
z

]
dx+

(
∂z

∂y

)
x

(
∂y

∂z

)
x

dz. (7.3.7)

Since x and z are independent, the coefficients of dx and dz on each side
of (7.3.7) must separately agree. (Equivalently, set x and z in turn equal to
constants.) Thus, (

∂z

∂y

)
x

(
∂y

∂z

)
x

= 1,(
∂z

∂y

)
x

(
∂y

∂x

)
z

(
∂x

∂z

)
y

= −1.

The latter identity is often called the cyclic chain rule, and admits an elegant
geometric interpretation. An alternative derivation is given in Section 7.4.
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7.4 Interpreting Differentials
Using differentials allows algebraic operations to yield information about differ-
entiation. Not only do we know that

du = ∂u

∂v
dv + ∂u

∂w
dw (7.4.1)

but we can also run this argument in reverse.
Suppose we know that

du = Adv +B dw. (7.4.2)

where A and B may be complicated algebraic expressions involving u, v, and
w. Then, by comparing Equation (7.4.1) and Equation (7.4.2), we see that

A = ∂u

∂v
,

B = ∂u

∂w
.

We call this process "interpreting the partial derivatives."
Furthermore, we can use algebra to solve for dv, obtaining

dv = 1
A
du− B

A
dw, (7.4.3)

and we can conclude that (
∂v

∂u

)
w

= 1
A
,(

∂v

∂w

)
u

= −B
A
.

With so many variables in use at the same time, it became important to
specify which ones are being held constant when taking derivatives; this is done
by writing

(
∂v
∂u

)
w
to denote the partial derivative of v with respect to u "with

w held constant." We have therefore shown that(
∂u

∂v

)
w

(
∂v

∂u

)
w

= 1,(
∂u

∂v

)
w

(
∂v

∂w

)
u

+
(
∂u

∂w

)
v

= 0,

and the latter of these equations is usually rewritten in the form(
∂u

∂v

)
w

(
∂v

∂w

)
u

(
∂w

∂u

)
v

= −1 (7.4.4)

and called the cyclic chain rule.
In practice, using algebra to rearrange equations involving differentials

automatically incorporates the chain rule in all of these forms. It is often easier
to rearrange and interpret than to use the formulas.

7.5 Things not to do with Differentials
Differentials are a wonderful tool for manipulating derivatives. However, it is
important to remember that differentials themselves always refer to the total
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change in a quantity. Ratios of differentials can often be interpreted as ordinary
derivatives, but not as partial derivatives. Put differently, correct statements
about differentials can be obtained by pulling apart an ordinary derivative, but
never by pulling apart a partial derivative.

For instance, it is fine to convert the chain rule statement

df

dt
= ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt
(7.5.1)

to the statement
df = ∂f

∂x
dx+ ∂f

∂y
dy (7.5.2)

by “multiplying” both sides by dt. In fact, we like to start with (7.5.2) and
obtain the usual chain rule statement (7.5.1) by “dividing” both sides by dt.
However, this can not be done with partial derivatives.

Consider for example the partial differential equation

∂u

∂x
= x

∂u

∂y
(7.5.3)

One way to obtain a solution of (7.5.3) is by separation of variables. In the
absence of boundary conditions, this approach would yield a general solution
of the form

u =
∫
A(c) ec(y+ 1

2x
2) dc

in agreement with the “obvious” solution u = f(y+ 1
2x

2) (which is however not
in general separable):

u(x, y) = X(x)Y (y)

=⇒ 1
xX

dX

dx
= constant = 1

Y

dY

dy

=⇒ dX

X
= cx dx and dY

Y
= c dy

=⇒ u = Aec(y+ 1
2x

2).

Contrast this correct use of differentials with the following, incorrect, argu-
ment. Rewrite (7.5.3) as

du dy = x du dx (7.5.4)

Now cancel du from both sides, obtaining

dy = x dx (7.5.5)

suggesting that the “solution” to (7.5.3) is given by

y = 1
2x

2. (7.5.6)

The moral is that partial derivatives can not be treated as ratios of differen-
tials. Do not be misled by (7.5.2) itself, which does indeed imply that

df = ∂f

∂x
dx (7.5.7)

if y = constant; that assumption effectively turns the partial derivative into
an ordinary derivative. If several variables are changing, “shortcuts” such as
(7.5.7) are not valid.
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The Vector Differential

8.1 The Vector Differential d~r

Figure 8.1.1 The infinitesimal displacement vector d~r along a curve, shown
in an “infinite magnifying glass”. In this and subsequent figures, artistic license
has been taken in the overall scale and the location of the origin in order to
make a pedagogical point.

The position vector
~r = x x̂+ y ŷ + z ẑ (8.1.1)

describes the location of the point (x, y, z) in rectangular coordinates, and is
usually thought of as pointing from the origin to that point. It is instructive to
draw a picture of the small change ∆~r = ∆x x̂+ ∆y ŷ + ∆z ẑ in the position
vector between nearby points. Try it! This picture is so useful that we will go
one step further, and consider an infinitesimal change in position. Instead of
∆~r, we will write d~r for the vector between two points which are infinitesimally
close together. This is illustrated in Figure 8.1.1, which shows a view of the
curve through an “infinite magnifying glass”.

Like any vector, d~r can be expanded with respect to x̂, ŷ, ẑ; the components
of d~r are just the infinitesimal changes dx, dy, dz, in the x, y, and z directions,
respectively, that is

d~r = dx x̂+ dy ŷ + dz ẑ (8.1.2)

as shown in Figure 8.1.2, The geometric notion of d~r as an infinitesimal vector
displacement will be a unifying theme to help us in visualizing the geometry of
all of vector calculus.

84
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Figure 8.1.2 The first figure shows the rectangular components of the vector
differential d~r in two dimensions, while the second figure shows the infinitesimal
version of the Pythagorean Theorem.

What is the infinitesimal distance ds between nearby points? Just the length
of d~r. We have

ds = |d~r| =
√
d~r · d~r =

√
dx2 + dy2 + dz2 (8.1.3)

and squaring both sides leads to

ds2 = |d~r|2 = d~r · d~r = dx2 + dy2 + dz2 (8.1.4)

which is just the infinitesimal Pythagorean Theorem, the two-dimensional
version of which is shown in Figure 8.1.2. 1

8.2 Finding d~r on Rectangular Paths
In the activity below, you will construct the vector differential d~r in rectangular
coordinates. This vector differential is the building block used to construct
multi-dimensional integrals, including flux, surface, and volume integrals, so
long as they are expressed in rectangular coordinates.

Activity 8.2.1 The Vector Differential in Rectangular Coordinates.
The arbitrary infinitesimal displacement vector in Cartesian coordinates is:

d~r = dx x̂+ dy ŷ + dz ẑ (8.2.1)

Given the cube shown below, find d~r on each of the three paths, leading
from a to b. Notice that the vector differential in Equation (8.2.1) has both a
magnitude and a direction.

Path 1: d~r =
Path 2: d~r =
Path 3: d~r =

1When dealing with infinitesimals, we prefer to avoid second-order errors by anchoring all
vectors to the same point.
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8.3 Other Coordinate Systems
It is important to realize that d~r and ds are defined geometrically, not by
the component expressions in (8.1.2) and (8.1.4). Because of this coordinate-
independent nature of d~r, it is possible and useful to study d~r in another
coordinate system, such as polar coordinates (r,φ) in the plane.1 It is then
natural to use basis vectors {r̂, φ̂} adapted to these coordinates, with r̂ being
the unit vector in the radial direction, and φ̂ being the unit vector in the
direction of increasing φ; see Section 1.12. 2

Figure 8.3.1 The infinitesimal vector version of the Pythagorean Theorem, in
both rectangular and polar coordinates.

By determining the lengths of the sides of the infinitesimal polar “rectangle”
shown in the last drawing of Figure 8.3.1, one obtains

d~r = dr r̂ + r dφ φ̂ (8.3.1)
1We choose φ for the polar angle in order to agree with the standard conventions for

spherical coordinates used by everyone but (American) mathematicians.
2One can of course relate r̂ and φ̂ to x̂ and ŷ, for instance using the second figure in

Figure 1.20.1. However, in most physical applications (as opposed to problems in calculus
textbooks) this step can be avoided by making an appropriate initial choice of coordinates.
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Notice the factor of r in the φ̂ term; dφ by itself is not a length. The length
of an infinitesimal arc is r dφ. Using (8.1.3) to find the length of d~r as before
leads to

ds2 = dr2 + r2 dφ2 (8.3.2)

which is the infinitesimal Pythagorean Theorem in polar coordinates.

8.4 Calculating Infinitesimal Distance in Cylin-
drical and Spherical Coordinates

In the activities below, you will construct infinitesimal distance elements (some-
times called line elements) in rectangular, cylindrical, and spherical coordinates.
These infinitesimal distance elements are building blocks used to construct
multi-dimensional integrals, including surface and volume integrals. To con-
struct flux integrals, you will need vector differentials, which are a slight variant
of the infinitesimal distance elements. See Section 8.5.
Activity 8.4.1 The Distance Element in Rectangular Coordinates.
Given the cube shown below, find ds on each of the three paths, leading from a
to b.

Path 1: ds =
Path 2: ds =
Path 3: ds =

The infinitesimal distance element ds is an infinitesimal length. Find the
appropriate expression for ds for the path which goes directly from a to c as
drawn below.

Path 4: ds =
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Hint. An infinitesimal element of length in the z-direction is simply dz
Cartesian coordinates would be a poor choice to describe a path on a

cylindrically or spherically shaped surface. Next we will find appropriate
expressions in these cases.

Activity 8.4.2 The Distance Element in Cylindrical Coordinates.

Figure 8.4.1 An infinitesimal box in cylindrical coordinates
You will now use geometry to determine the general form for ds in cylindrical

coordinates by determining ds along the specific paths below. See Figure 8.4.1.
Geometrically determine the length of the three paths leading from a to b.

Notice that, along any of these three paths, only one coordinate s, φ, or z is
changing at a time (i.e. along path 1, dz 6= 0, but dφ = 0 and dr = 0).

Path 1: ds =
Path 2: ds =
Path 3: ds =
If all three coordinates are allowed to change simultaneously, by an infinites-
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imal amount, we could write this ds for any path as:
ds=
This is the general distance element in cylindrical coordinates.

Hint. Analogously to rectangular coordinates, an infinitesimal element of
length in the r direction is simply dr. But an infinitesimal element of length in
the φ direction in cylindrical coordinates is not just dφ, since this would be an
angle and does not even have the units of length.

Using the relationship between angles (in radians!) and radius, the infinites-
imal element of length in the φ direction in cylindrical coordinates is s dφ.
Activity 8.4.3 The Distance Element in Spherical Coordinates.

Figure 8.4.2 An infinitesimal box in spherical coordinates
You will now use geometry to determine the general form for ds in spherical

coordinates by determining ds along the specific paths below. See Figure 8.4.2.
As in the cylindrical case, note that an infinitesimal element of length in the θ̂
or φ̂ direction is not just dθ or dφ. You will need to be more careful.

Geometrically determine the length of the three paths leading from a to b.
Notice that, along any of these three paths, only one coordinate r, θ, or φ is
changing at a time (i.e. along path 1, dθ 6= 0, but dr = 0 and dφ = 0).

Path 1: ds =
Path 2: ds = (Be careful, this is the tricky one.)
Path 3: ds =
If all 3 coordinates are allowed to change simultaneously, by an infinitesimal

amount, we could write this ds for any path as:
ds=
This is the general line element in spherical coordinates.

Hint. A similar argument to the one used above for cylindrical coordinates,
shows that the infinitesimal element of length in the θ direction in spherical
coordinates is r dθ.

What about the infinitesimal element of length in the φ direction in spherical
coordinates? Make sure to study the diagram carefully. Where is the center of
a circle of constant latitude? It is not at the center of the sphere, but rather
along the z-axis. The radius of this circle is not r, but rather r sin θ, so the
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infinitesimal element of length in the φ direction in spherical coordinates is
r sin θ dφ.

8.5 Calculating d~r in Curvilinear Coordinates
In Section 8.2, you discovered how to write d~r in rectangular coordinates.
However, this coordinate system would be a poor choice to describe a path
on a cylindrically or spherically shaped surface. We will now find appropriate
expressions in these cases.

Activity 8.5.1 The Vector Differential in Cylindrical Coordinates.

Figure 8.5.1 An infinitesimal box in cylindrical coordinates
You will now use geometry to determine the general form for d~r in cylindrical

coordinates by determining d~r along the specific paths below. See Figure 8.5.1.
Note that an infinitesimal element of length in the ŝ direction is simply

ds, just as an infinitesimal element of length in the x̂ direction is dx. But, an
infinitesimal element of length in the φ̂ direction is not just dφ, since this would
be an angle and does not have the units of length.

Geometrically determine the length of the three paths leading from a to b
and write these lengths in the corresponding boxes on the diagram.

Now, remembering that d~r has both magnitude and direction, write the
infinitesimal displacement vector d~r along the three bold paths from the point
(s, φ, z) to b. Notice that, along any of these three paths, only one coordinate s,
φ, or z is changing at a time (i.e. along path 1, dz 6= 0, but dφ = 0 and ds = 0).

Path 1: d~r =
Path 2: d~r =
Path 3: d~r =
If all three coordinates are allowed to change simultaneously, by an infinites-

imal amount, we could write this d~r for any path as:
d~r=
This is the general line element in cylindrical coordinates.

Hint. Make sure you think about what the correct lengths are in each coordi-
nate direction. Angles are not lengths!
Solution. Upon completing this activity, you should have obtained the ex-
pressions

d~r = dx x̂+ dy ŷ + dz ẑ
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= ds ŝ+ s dφ φ̂+ dz ẑ

in rectangular and cylindrical coordinates, respectively.
Activity 8.5.2 The Vector Differential in Spherical Coordinates.

Figure 8.5.2 An infinitesimal box in spherical coordinates
You will now use geometry to determine the general form for d~r in spherical

coordinates by determining d~r along the specific paths below. See Figure 8.5.2.
As in the cylindrical case, note that an infinitesimal element of length in the θ̂ or
φ̂ direction is not just dθ or dφ. You will need to be more careful. Geometrically
determine the length of the three bold paths leading from (r, θ, φ) and write
these lengths below. Now, remembering that d~r has both magnitude and
direction, write down below the infinitesimal displacement vector d~r along the
three paths. Notice that, along any of these three paths, only one coordinate r,
θ, or φ is changing at a time (i.e. along path 1, dθ 6= 0, but dr = 0 and dφ = 0).

Path 1: d~r =
Path 2: d~r = (Be careful, this is the tricky one.)
Path 3: d~r =
If all three coordinates are allowed to change simultaneously, by an infinites-

imal amount, we could write this d~r for any path as:
d~r=
This is the general line element in spherical coordinates.

Hint. As before, make sure you think about what the correct lengths are in
each coordinate direction, and recall that angles are not lengths. Also make
sure you know the radius of a circle of constant latitude.
Solution. Upon completing the worksheet, you should have obtained the
expressions

d~r = dx x̂+ dy ŷ + dz ẑ

= ds ŝ+ s dφ φ̂+ dz ẑ

= dr r̂ + r dθ θ̂ + r sin θ dφ φ̂

in rectangular, cylindrical, and spherical coordinates, respectively.



CHAPTER 8. THE VECTOR DIFFERENTIAL 92

8.6 Scalar Surface Elements
Activity 8.6.1 Scalar Surface Elements. Using the expressions for the
infinitesimal elements of length derived and discussed in Sections 8.4 and
Section 8.4, you should find explicit formulas for the surface or volume elements
in each of the following cases:
• the scalar surface elements for the three surfaces (top, bottom, and curved
side) of a cylinder with finite length;

• the scalar surface element for a horizontal plane through the z-axis;

• the scalar surface element for the surface of a sphere.

• the volume element of a cylinder;

• the volume element for a sphere.

You may find the diagrams in Section 8.4 to be helpful.
Hint. Evaluating surface integrals in other coordinate systems involves the
same idea as double integrals in rectangular coordiantes: chop and add. The
difference is in the way one chops.
Solution. In polar coordinates, one chops a region into pie shaped regions
using radial lines and circles. These lines are orthogonal to each other, so that
a small enough piece is nearly rectangular, which means that its area is just its
length times its width. As discussed in [1], a little thought shows that a radial
side has length ds, but a circular side has length s dφ — not merely dφ, which
has the wrong units. Thus, in polar coordinates,

dA = s ds dφ (8.6.1)

The same argument shows that a small piece of the surface of a cylinder
has area given by

dA = s dφ dz (8.6.2)

since the two sides of the rectangle have lengths s dφ and dz. This construction
is illustrated in Figure 8.4.1 (which can also be used for polar coordinates if
one ignores the vertical path).

Spherical coordinates can be handled similarly. The two sides are parts of
lines of longitude and latitude. Segments along lines of longitude (“vertical”)
have length r dθ, but segments along lines of latitude (“horizontal”) have length
r sin θ dφ — the radius of the circle depends on the latitude, hence the extra
factor, which turns out to be sin θ. Thus, on the surface of a sphere we have

dA = r2 sin θ dθ dφ (8.6.3)

This construction is illustrated in Figure 8.4.2.
Similar arguments apply to triple integrals, as discussed in Section 8.7.

8.7 Triple Integrals in Cylindrical and Spherical
Coordinates

Evaluating multiple integrals in other coordinate systems involves the same
idea as in rectangular coordinates: chop and add. The difference is in the way
one chops.
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In cylindrical coordinates, one chops a region into small pieces that look
like “pineapple chunks”, with volume dV (or dτ in another common notation)
given by

dV = s ds dφ dz. (8.7.1)
This construction is illustrated in Figure 8.4.1 (which can also be used for polar
coordinates if one ignores the vertical path).

Spherical coordinates can be handled similarly, where the small pieces now
look like parts of orange segments. The radial side still has length dr, and the
other two sides can be thought of as (parts of) lines of longitude and latitude.
Segments along lines of longitude (“vertical”) have length r dθ, but segments
along lines of latitude (“horizontal”) have length r sin θ dφ — the radius of the
circle depends on the latitude, hence the extra factor, which turns out to be
sin θ. Thus, in spherical coordinates we have

dV = r2 sin θ dr dθ dφ. (8.7.2)

This construction is illustrated in Figure 8.4.2.

8.8 Using d~r on More General Paths
In this section, we use the formula d~r = dx x̂ + dy ŷ + dz ẑ in rectangular
coordinates to calculate some simple geometric/physical quantities.

Activity 8.8.1 The Vector Differential in Rectangular Coordinates.
The arbitrary infinitesimal displacement vector in Cartesian coordinates is:

d~r = dx x̂+ dy ŷ + dz ẑ (8.8.1)

Given the unit cube shown below, find d~r on path 4, leading from a to c.
Then, use this expression to find the length of the line segment between a and
c.

Path 4: d~r =

Hint. ‘‘Use what you know!’’ What is the value of z on this path? How is x
related to y? How is dx related to dy?
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Solution. What we know on this path is that z = 0 and therefore dz = 0.
We also know that x = y and therefore dx = dy. We can plug this information
into Equation (8.8.1), choosing to keep our calculations either in terms of the
variable x or in terms of the variable y, but not both.

d~r = dx x̂+ dy ŷ + dz ẑ

= dx (x̂+ ŷ)
⇒ |d~r| = |dx (x̂+ ŷ)|

= dx
√

(x̂+ ŷ) · (x̂+ ŷ)
=
√

2

Notice how using d~r automatically generates the geometric factor of
√

2.
We can integrate |d~r| to get the length of the line segment. Since we have

expressed |d~r| in terms of dx, we must be careful to be consistent and express
the limits of integration also in terms of x, i.e. for a unit cube, 0 ≤ x ≤ 1. Be
careful to integrate in a direction so that |dx| is a positive direction.

LENGTH =
∫
|d~r|

=
√

2 |dx|
=
√

2 dx

8.9 Use What You Know

Suppose you want to find the work done by the force ~F = y2 x̂ + y ŷ when
moving along a given curve C. Curves can be specified in several different ways;
let us consider some examples, all of which refer to the same curve, starting at
(1, 0) and ending at (0, 1).

1. Consider first the parametric curve ~r = (1− u2) x̂+ u ŷ. It is straightfor-
ward to compute

d~r = (−2u x̂+ ŷ) du.

Since a curve is described by a single parameter, in this case u, we write
everything in terms of that parameter. Since ~r = x x̂ + y ŷ, we have
x = 1− u2, y = u, and therefore∫

C

~F · d~r =
∫ 1

0

(
u2 x̂+ u ŷ

)
· (−2u x̂+ ŷ) du

=
∫ 1

0
(−2u3 + u) du = 0.

2. In physical applications, one is rarely given an explicit parameterization of
the curve, but rather some other description. For instance, the curve just
discussed might have been defined by the equation x = 1− y2. Finding
the differential of both sides of this expression yields dx = −2y dy, and
substituting into (8.1.2) leads to

d~r = (−2y x̂+ ŷ) dy.

The computation is exactly the same as before, using y instead of u.
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3. Alternatively, one can solve for y, obtaining y =
√

1− x, then compute
dy in terms of dx, then substitute into (8.1.2), obtaining

d~r = dx x̂− dx

2
√

1− x
ŷ

so that 1 ∫
C

~F · d~r =
∫ 0

1

(
1
2 − x

)
dx = 0.

It is important to realize that all of these methods work; using what you
know will always yield correct answers — eventually.

In a “use what you know” strategy, you may not be sure when to stop! A
common error is to substitute for dy in terms of dx in d~r, but to forget to
substitute for y in terms of x in ~F . The rule of thumb is that you shouldn’t
start integrating until you have the integral in terms of a single parameter —
including correctly determining the limits in terms of that parameter. Curves
are one-dimensional!

Here is another example. Suppose you want to integrate
∫
C

~F ·d~r, where ~F =

y x̂, and C is the line segment from (1, 0) to (0,−1). Start with expression (8.1.2)
for d~r. What do you know? Well, the slope of the line segment is clearly +1,
and its y-intercept is −1, so the equation of the line is y = x− 1. Taking the
differential of both sides, dy = dx, so that d~r = dx x̂+ dx ŷ. Finally, note that
x runs from 1 to 0! Thus,∫

C

~F · d~r =
∫ 0

1
(x− 1) x̂ · (x̂+ ŷ) dx

=
∫ 0

1
(x− 1) dx =

(
x2

2 − x
) ∣∣∣∣∣

0

1

= 1
2 .

Yes, of course, this particular curve is easy to parameterize, but this is not
always the case. Note also how easy it was to get the limits right, and thus get
the correct sign, simply by always starting with expression (8.1.2) for d~r, and
integrating from your starting point to your final point.

This is important: Vector line integrals of the form
∫
C

~F · d~r are directed

integrals; the sign of the answer depends on which way you traverse the curve.
You will obtain the correct sign automatically if you integrate from the beginning
point to the final point, without putting in any artificial signs. As in the last
example, this may result in an integral which goes from a larger value of the
integration variable to a smaller one.

This sign dependence is not the case for line integrals with respect to
arclength. Since ds = |d~r|, such integrals do not depend on which way the
curve is traversed. Standard examples are arclength and mass, which must be
positive! Other times you may have to think about it to get the sign right;
the total charge on a wire could be positive or negative. One way to keep this
straight is to remember that ds = |d~r|, which has an absolute value in it, which
requires care with signs.

We summarize this discussion by writing∫
−C

f ds = +
∫
C

f ds but
∫
−C

~F · d~r = −
∫
C

~F · d~r (8.9.1)

1Note that y decreases along the curve.
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where −C denotes the reversed curve. You will always get the sign right for
vector line integrals if you are careful to put the limits in correctly (from starting
point to ending point), whereas you may have to think about signs for the
scalar line integrals.
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Gradient

9.1 The Geometry of Gradient
How do you compute a derivative of a quantity that depends on a single variable?
By taking the ratio of small changes in the quantity to small changes in the
variable. But what if the quantity depends on several variables, such as the
temperature in the room? Use the same strategy — but the result will depend
on which direction you go.

Suppose therefore that you are given a quantity f that depends on position
in space. We could express that position in terms of rectangular coordinates
(x, y, z), but let’s save that for later. To find the derivative of f at a given point
and in a given direction, we must first specify the point and the direction. We
know how to do that!

A point in space can be described in terms of the position vector ~r from
the origin to the given point. And the direction is determined by considering
any curve through the given point; a small change in position along the curve
is, of course, described by d~r.

So consider the small change df in f along the curve. As ds = |d~r| shrinks
to 0, so does df ; the derivative of f along the curve is the (limiting value of
the) ratio of the small quantities df and ds.

Now consider computing this derivative in all possible directions. There
will be one direction in which the derivative is as large as possible. We define
the gradient of f , written ~∇f , to be the vector whose direction is the direction
in which f increases the fastest, and whose magnitude is the derivative of f in
that direction. This construction yields the gradient of f at a given point, and
we can repeat the process at any point; the gradient of f is a vector field.

How much does f change in an arbitrary direction? Suppose we have a
curve through the given point that goes in this new direction. Since derivatives
are linear, the rate of change along this new curve is just the projection of ~∇f
along the curve, namely

df

ds
= ~∇f · d~r

|d~r|
(9.1.1)

where d~r and ds now refer to the new curve, and are therefore different than
before. Remembering that |d~r| = ds, we can rewrite this expression as

df = ~∇f · d~r (9.1.2)

which we refer to as the Master Formula, and which can also be taken as the
geometric definition of the gradient.
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Recall that df represents the infinitesimal change in f when moving to
a “nearby” point. What information do you need in order to know how f
changes? You must know something about how f behaves, where you started,
and which way you went. The Master Formula organizes this information
into two geometrically different pieces, namely the gradient, containing generic
information about how f changes, and the vector differential d~r, containing
information about the particular change in position being made.

We refer to (9.1.2) as the Master Formula, because it contains all of the
information needed to determine the gradient, and does so without relying on
a particular coordinate system.

9.2 The Gradient in Rectangular Coordinates
As discussed in Section 6.9, the chain rule for a function of several variables,
written in terms of differentials, takes the form:

df = ∂f

∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz. (9.2.1)

Each term is a product of two factors, labeled by x, y, and z. This looks like a
dot product. Separating out the pieces, we have

df =
(
∂f

∂x
x̂+ ∂f

∂y
ŷ + ∂f

∂z
ẑ

)
· (dx x̂+ dy ŷ + dz ẑ). (9.2.2)

The last factor is just d~r, and you may recognize the first factor as the gradient
of f written in rectangular coordinates. Putting this all together, this algebraic
observation leads us back to (9.1.2), as further discussed in Section 9.1.

With our new interpretation of (9.1.2) as the definition of the gradient,
the argument above shows how to determine the formula for the gradient in
rectangular coordinates, namely

~∇f = ∂f

∂x
x̂+ ∂f

∂y
ŷ + ∂f

∂z
ẑ. (9.2.3)

9.3 Properties of the Gradient
What does the gradient mean geometrically? Along a particular path, df tells
us something about how f is changing. But the Master Formula tells us that
df = ~∇f · d~r, which means that the dot product of ~∇f with a vector tells us
something about how f changes along that vector. So let ŵ be a unit vector,
and consider

~∇f · ŵ = |~∇f | |ŵ| cos θ = |~∇f | cos θ (9.3.1)

which is clearly maximized by θ = 0. Thus, the direction of ~∇f is just the
direction in which f increases the fastest, and the magnitude of ~∇f is the rate
of increase of f in that direction (per unit distance, since ŵ is a unit vector).
If you visualize the value of the scalar field f as represented by color, then
the gradient points in the direction in which the rate of change of the color is
greatest.

You can also visualize the gradient using the level surfaces on which
f(x, y, z) = const. (In two dimensions there is the analogous concept of
level curves, on which f(x, y) = const.) Consider a small displacement d~r that
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lies on the level surface, that is, start at a point on the level surface, and move
along the surface. Then f doesn’t change in that direction, so df = 0. But then

0 = df = ~∇f · d~r = 0 (9.3.2)

so that ~∇f is perpendicular to d~r. Since this argument works for any vector
displacement d~r in the surface, ~∇f must be perpendicular to the level surface.

If you prefer working with derivatives instead of differentials, consider a
curve ~r(u) that lies in the level surface. Now simply divide (9.3.2) by du,
obtaining

0 = df

du
= ~∇f · d~r

du
= 0 (9.3.3)

so that ~∇f is perpendicular to the tangent vector d~r
du (which is just the velocity

vector if the parameter u represents time). Again, this argument applies to any
curve in the level surface, so ~∇f must be perpendicular to every such curve.
In other words, ~∇f is perpendicular to the level surfaces of f , that is

~∇f ⊥ {f(x, y, z) = const}. (9.3.4)

Figure 9.3.1 Gradient vectors along a level curve.
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This orthogonality is shown for the case of level curves in Figure 9.3.1,
which shows the gradient vector at several points along a particular level curve
among several. You can think of such diagrams as topographic maps, showing
the “height” at any location. The magnitude of the gradient vector is greatest
where the level curves are close together, so that the “hill” is steepest.

An alternative way of seeing this orthogonality is to recognize that, since the
gradient is a derivative operator, its value depends only on what is happening
locally. If you zoom in close enough to a given point, the level surfaces are
parallel, and the gradient points in the direction from one level surface to the
next.

Like all derivative operators, the gradient is linear (the gradient of a sum is
the sum of the gradients), and also satisfies a product rule

~∇(fg) = (~∇f) g + f (~∇g). (9.3.5)

This formula can be obtained either by working out its components in, say,
rectangular coordinates, and using the product rule for partial derivatives, or
directly from the product rule in differential form, which is

d(fg) = (df) g + f (dg) (9.3.6)

as discussed in Section 6.5.

9.4 Visualizing the Geometry of the Gradient
The activity below is designed to help you understand the geometry of topo-
graphic maps and the gradient vector.

Activity 9.4.1 Suppose you are standing on a hill. You have a topographic
map, which uses rectangular coordinates (x, y) measured in miles. Your global
positioning system says your present location is at one of the following points
(pick one):

A:(1, 4), B:(4− 9), C:(−4, 9), D:(1,−4), E:(2, 0), F :(0, 3).

Your guidebook tells you that the height h of the hill in feet above sea level is
given by

h = a− bx2 − cy2

where a = 5000 ft, b = 30 ft
mi2 , and c = 10 ft

mi2 .
1. Where is the top of the hill located?

2. How high is the hill?

3. Draw a topographic map of the hill. Your map should have at least 3
level curves; label your location on the map.

4. What is your height?

5. Starting at your present location, in what map direction (2-d unit vector)
do you need to go in order to climb the hill as steeply as possible? Draw
this vector on your topographic map.

6. How steep is the hill if you start at your present location and go in this
compass direction? Draw a picture which shows the slope of the hill at
your present location.
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7. In what direction in space (3-d vector) would you actually be moving if
you started at your present location and walked in the map direction you
found above? To simplify the computation, your answer does not need to
be a unit vector.

8. Stand up and imagine yourself standing at your chosen point on the hill
— you will need to decide where the top of the hill is located. Now point
in the direction of the gradient at your location.

Hint.

Figure 9.4.1 The topgraphic map of the hill.
Figuring out the location of the top of the hill, and its height, should have

been straightforward. But drawing level curves — the topo map for the hill,
shown in Figure 9.4.1 — is not so easy. Don’t skip this step! Feel free to use a
graphics program to generate these drawings, but it is important to develop
the ability to translate between equations and topo maps.

A key feature that you should have realized while answering these questions
is that the gradient lives in the topo map, not on the hill. Although we think of
the gradient as pointing “uphill”, the gradient of a function of two variables is
a vector in the xy-plane. In particular, when answering the last question, your
hand should have been horizontal!

In order to find the 3-dimensional vector direction of travel, you will need
to combine a horizontal vector in the direction of the gradient with a vertical
vector scaled so that the ratio is the steepness of the hill at the given point —
which is given by the magnitude of the gradient. It is probably easiest, but not
necessary, to choose the horizontal part of this vector to be a unit vector. Make
sure you get the units right!

A possible extension would be to answer the same questions for the hill
given by

h = 2xy − 3x2 − 4y2 − 18x+ 28y + 1200.

9.5 Using Technology to Visualize the Gradient
The gradient of a function of three variables is a vector at each point in space.
How can we graph such vector fields? How many different ways can you
represent this information?

Activity 9.5.1 Using technology to visualize the gradient. After you
have thought about these questions yourself, you can use the Sage code below
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to explore several different mechanisms for visualizing the gradient in two and
three dimensions. You can also use this Mathematica notebook1 for the same
purpose.

The code in the first box does some initialization, then defines and plots a
function of two variables.

pretty_print_default(True)
from sage.manifolds.operators import *
E.<x,y>= EuclideanSpace ()
E.default_frame ()[1]. set_name(latex_name=r’\,\ boldsymbol {\hat{x}}’)
E.default_frame ()[2]. set_name(latex_name=r’\,\ boldsymbol {\hat{y}}’)
f(x,y)=exp(-x^2)*exp(-y^2)
p3=plot3d(f(x,y),(x,-1,1) ,(y,-1,1),adaptive=true)
p3

Now we can plot a contour diagram of the chosen function f .

pc=contour_plot(f(x,y),(x,-1,1) ,(y,-1,1),linewidths =0)
pc

Next we compute the gradient of f ...

gf=f.gradient ()
# gf(x,y)
E.vector_field(gf).display ()

... and plot it. 2

pg=plot_vector_field(gf ,(x,-1,1) ,(y,-1,1),plot_points =11)
pg

Finally, we display both plots together. What do you notice?

pc+pg

Now try other functions by plugging something else in for f(x, y) in the first
box and then redoing the other steps. A particularly nice choice is f = ey

2−x2 .
Hint.

http://math.oregonstate.edu/bridge/paradigms/vfgradient.nb
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Figure 9.5.1 The gradient in 2 dimensions.
In the activity in Section 9.5, you were asked to explore different ways of

representing the gradient graphically. One combined representation is shown in
Figure 9.5.1, showing both the gradient vector field and the level curves.

9.6 Contour Diagrams
Figure 9.6.1 shows the relationship between tables of data, contour lines, and
contour diagrams. Figure 9.6.2 then shows the relationship of contour diagrams
to the underlying graph.

Figure 9.6.1 The relationship between tables of data and contour diagrams.
Click on the check boxes to examine each of these features separately.

1math.oregonstate.edu/bridge/paradigms/vfgradient.nb
2You may need to adjust the value of the scale option in this plot, which controls the

overall scale of the vectors drawn.
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Figure 9.6.2 The relationship between contour diagrams and graphs. Click
and drag the figure!

Activity 9.6.1 Can you determine the function whose data is shown in Fig-
ures 9.6.1–9.6.2?
Solution. The level sets are circles, each with an equation of the form x2+y2 =
constant. So the underlying function is f(x, y) = x2+y2. The three-dimensional
graph (click and drag!) in Figure 9.6.2 shows the paraboloid z = x2 + y2, that
is, z = f(x, y).

Activity 9.6.2 Using technology to visualize level sets. After you have
thought about these questions yourself, you can use the Sage code below to
explore several different mechanisms for visualizing level sets in two dimensions.
The code in the first box defines and plots a function of two variables.

f(x,y)=exp(-x^2)*exp(-y^2)
p3=plot3d(f(x,y),(x,-1,1) ,(y,-1,1),adaptive=true)
p3

Now we can plot a contour diagram of the chosen function f .

pc=contour_plot(f(x,y),(x,-1,1) ,(y,-1,1),linewidths =0)
pc

Now try other functions by plugging something else in for f(x, y) in the first
box and then redoing the other steps. A particularly nice choice is f = ey

2−x2 .

9.7 Directional Derivatives
Differentials such as df are rarely themselves the answer to any physical question.
So what good is the Master Formula? The short answer is that you can use it
to answer any question about how f changes. Here are some examples.

• Suppose you are an ant walking in a puddle on a flat table. The depth of
the puddle is given by h(x, y). You are given x and y as functions of time
t. How fast is the depth of water through which you are walking changing
per unit time?
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This problem is asking for the derivative of h with respect to t. So divide
the Master Formula by dt to get

dh

dt
= ~∇h · d~r

dt

where ~r describes the particular path you are taking. The factor d~r
dt is simply

your velocity. This dot product is easy to evaluate, and yields the answer to
the question.

(There are of course many ways to solve this problem; which method you
choose may depend on how your path is described. It is often easiest to simply
insert the given expressions for x and y in terms of t directly into h, then
differentiate the resulting function of a single variable, thus calculating the
left-hand side directly.)

• You are another ant on the same surface, moving on a path with y = 3x.
How fast is the depth changing compared with x?

This problem is asking for the derivative of h with respect to x as you
move along the path; note that this is the total derivative dh

dx , not the partial
derivative ∂h

∂x , which would only be appropriate if y were constant along the
path. So divide the Master Formula by dx to get

dh

dx
= ~∇h · d~r

dx

then use what you know (y = 3x) to relate the changes in x and y (dy = 3 dx),
so that

d~r = dx x̂+ dy ŷ = dx x̂+ 3 dx ŷ = (x̂+ 3 ŷ) dx

to obtain
d~r

dx
= x̂+ 3 ŷ.

Evaluating the dot product yields the answer to the question.

• You are still moving on the same surface, but now the question is, how
fast is the depth changing per unit distance along the path?

This problem is asking for the derivative of h with respect to arclength ds.
We can divide the Master Formula by ds, which leads to

dh

ds
= ~∇h · d~r

ds
.

Unfortunately, it is often difficult to determine s; it is not always possible to
express h as a function of s. On the other hand, all we need to know is that

ds = |d~r|

so that dividing d~r by ds is just dividing by its length; the result must be a
unit vector! Which unit vector? The one tangent to your path, namely the
unit tangent vector T̂ , so

dh

ds
= ~∇h · T̂ . (9.7.1)

Evaluating the dot product answers the question, without ever worrying about
arclength.

We have just seen that the derivative of f along a curve splits into two
parts: a derivative of f (namely ~∇f), and a derivative of the curve (d~r/du).
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But the latter depends only on the tangent direction of the curve at the given
point, not on the detailed shape of the curve. This leads us to the concept of
the directional derivative of f at a particular point ~r = ~r0 = ~r(u0) along the
vector ~v, which is traditionally defined as follows: 1

D~vf = lim
ε→0

f(~r0 + ε~v)− f(~r0)
ε

.

According to the above discussion, this derivative is just df/du along the tangent
line, which according to the Master Formula is

D~vf = ~∇f · ~v.

In Example 3 above, the left-hand side of (9.7.1) is just the directional derivative
of h in the direction T̂ , and could have been denoted by DT̂ h.

9.8 The Gradient in Curvilinear Coordinates
The master formula can be used to derive formulas for the gradient in other
coordinate systems. We illustrate the method for polar coordinates.

In polar coordinates, we have

df = ∂f

∂s
ds+ ∂f

∂φ
dφ

and of course
d~r = ds ŝ+ r dφ φ̂

which is (8.3.1). Comparing these expressions with the Master Formula (9.1.2),
we see immediately that we must have

~∇f = ∂f

∂s
ŝ+ 1

s

∂f

∂φ
φ̂. (9.8.1)

Note the factor of 1
s , which is needed to compensate for the factor of r in (8.3.1).

Such factors are typical for the component expressions of vector derivatives in
curvilinear coordinates.

Why would one want to compute the gradient in polar coordinates? Con-
sider the computation of ~∇

(
ln
√
x2 + y2

)
, which can done by brute force in

rectangular coordinates; the calculation is straightforward but messy, even if you
first use the properties of logarithms to remove the square root. Alternatively,
using (9.8.1), it follows immediately that

~∇
(

ln
√
x2 + y2

)
= ~∇ (ln s) = 1

s
ŝ.

A similar construction can be used to find the gradient in other coordinate
systems. For instance, in cylindrical coordinates we have

dV = ∂V

∂s
ds+ ∂V

∂y
dφ+ ∂V

∂z
dz

and since in cylindrical coordinates

d~r = ds ŝ+ r dφ φ̂+ dz ẑ

1It is often assumed that ~v is a unit vector, although this is not necessary.
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we obtain

~∇V = ∂V

∂s
ŝ+ 1

s

∂V

∂φ
φ̂+ ∂V

∂z
ẑ

This formula, as well as similar formulas for other vector derivatives in rectan-
gular, cylindrical, and spherical coordinates, are sufficiently important to the
study of electromagnetism that they can, for instance, be found on the inside
front cover of Griffiths’ textbook, Introduction to Electrodynamics, and are also
given in Appendix B.2.



Chapter 10

Integration

10.1 Review of Single Variable Integration

10.1.1 Theory
Integration is about chopping things up, and adding the pieces. This “chop-
ping and adding” viewpoint is often helpful in setting up problems involving
integration, and will be especially useful later for multiple integrals.

Figure 10.1.1 Chopping a line into small pieces.
For example, consider finding the total amount of chocolate on a straight

piece of wafer (like a stick of Pocky), given the density of chocolate on the
wafer. What does “density” mean? In this case, the amount of chocolate, which
could be measured in grams, per unit distance along the wafer, which could
be measured in centimeters. We call this quantity the (linear) mass density of
chocolate on the wafer, which we will denote by λ. Using x to measure distance
along the wafer, chop the wafer into small pieces of length dx, as indicated
symbolically in Figure 10.1.1. 1 What is the mass of each piece? Clearly, λ dx.
The total mass M of the chocolate on the wafer is given by adding up the mass
of each piece. Since in general λ depends on position, it can be thought of as
a function of x, that is, λ = λ(x). Thus, “adding” really means “integrating”,
and we obtain

M =
∫
λ(x) dx. (10.1.1)

You may have learned that integration is antidifferentiation, and that
integrals are areas. Yes, the total amount of chocolate, thought of as a function
of the distance from one end, is indeed an antiderivative of the function λ(x).
And yes, this integral represents the “area” under the graph of the function λ(x),
although the dimensions (mass) are not those of geometric area (length squared).
But the “infinitesmal mass” λ dx better represents the relevant physical process,
and should therefore be regarded as fundamental. Note the importance of dx
(and its units) to this argument!

From this point of view, the fundamental theorem of calculus is easy. If
you add up little bits of choclate (λ dx), you get the total amount of chocolate.

1We prefer the use of differentials in this argument in order to emphasize that the pieces
can be made as small as desired. This notation can be regarded as a shorthand for the use of
Riemann sums involving ∆x and an appropriate limit.

108
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Similarly, if you add up the small changes in some quantity, say dq, the charge
on a small piece of wire, you get its total change, so that∫

dq = q (10.1.2)

which might look more familiar if you write q = f(x), so that (10.1.2) becomes∫
df

dx
dx = f. (10.1.3)

Yes, this means that the integral of a derivative is the function you started
with. In the chocolate example, that function is the “total chocolate” function,
whose derivative is λ(x). Nonetheless, what you’re adding up is chocolate, that
is, λ dx, not merely λ, which is the density of chocolate, not the amount of
chocolate.

The use of differentials has other advantages. In the language of differentials,
substitution is easy: If u = x2, then du = 2x dx, so that e.g.∫

cos(x2) 2x dx =
∫

cos(u) du = sin(u) = sin(x2). (10.1.4)

And integration by parts is just the product rule: Start with

d(uv) = u dv + v du (10.1.5)

and integrate both sides (and rearrange terms as needed).
All of the above integrals are indefinite; both sides of the equality are

functions. Definite integrals are obtained simply by evaluating both sides at
the endpoints of some interval. For example:

b∫
a

df

dx
dx = f

∣∣∣b
a

= f(b)− f(a) (10.1.6)

and both sides of this equality are now numbers (with appropriate dimensions
and units).

10.1.2 Practice
In practice, (10.1.2) tells us that (single) integration is nothing more than
antidifferentation — just run the derivative rules backwards. Here are the basic
derivative rules, in differential form:

d (un) = nun−1 du,

d (eu) = eu du,

d(sin u) = cosu du,
d(cosu) = − sin u du,

d(ln u) = 1
u
du.

To obtain the corresponding integration rules, simply integrate both sides,
and use (10.1.2)). For example, the first rule becomes∫

nun−1 du = un (10.1.7)
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which is more commonly written in the form∫
um du = um+1

m+ 1 (10.1.8)

where of course m = n− 1 6= −1. 2

10.1.3 Skills Check
At this point, you should be able to integrate easily simple expressions involving
polynomials, trig, exponentials, and logarithms, including those requiring
reasonably obvious substitutions, and you should be comfortable with occasional
problems involving more complicated substitutions and/or integration by parts.
If you are not comfortable with these skills, including the necessary algebra,
you are strongly encouraged to spend as much time as needed on review and
practice until you are truly fluent.

10.2 Scalar Line Integrals
What if you want to determine the mass of a wire in the shape of the curve C
if you know the density λ? The same procedure still works; chop and add. In
this case, the length of a small piece of the wire is ds = |d~r|, so its mass is λ ds,
and the integral becomes

m =
∫
C

λ ds (10.2.1)

which can also be written as

m =
∫
C

λ(~r) |d~r| (10.2.2)

which emphasizes both that λ is not constant, and that ds is the magnitude of
d~r.

Another standard application of this type of line integral is to find the center
of mass of a wire. This is done by averaging the values of the coordinates,
weighted by the density λ as follows:

x̄ = 1
m

∫
C

xλ(~r) ds (10.2.3)

with m as defined above. Similar formulas hold for ȳ and z̄; the center of mass
is then the point (x̄, ȳ, z̄).

10.3 Vector Line Integrals

Consider now the problem of finding the work W done by a force ~F in moving
a particle along a curve C. We begin with the relationship

work = force× distance. (10.3.1)
2It is customary, but by no means essential, to add an arbitrary constant to such integral

formulas as a reminder that functions have many antiderivatives, which differ by a constant.
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Suppose you take a small step d~r along the curve. How much work was done?
Since only the component along the curve matters, we need to take the dot
product of ~F with d~r. Adding this up along the curve yields

W =
∫
C

~F · d~r. (10.3.2)

So how do you evaluate such an integral?
Use what you know!

10.4 General Surface Elements
Since surfaces are two-dimensional, chopping up a surface is usually done by
drawing two families of curves on the surface. Then you can compute d~r on
each family and take the cross product, see Section 1.21, to get the vector
surface element in the form

d ~A = d~r1 × d~r2. (10.4.1)

In order to determine the area of the vector surface element, we need the
magnitude of this expression, which is

dA = |d ~A| = |d~r1 × d~r2| (10.4.2)

and which is called the (scalar) surface element. This usage should remind you
of the corresponding relation for line integrals, namely ds = |d~r|.

Figure 10.4.1 Chopping up a paraboloid in rectangular coordinates.
We illustrate this technique by computing the surface element for the

paraboloid given by z = x2 + y2, as shown in Figure 10.4.1, with the two
families of curves corresponding to {x = const} and {y = const}. We start
with the basic formula for the vector differential d~r, namely

d~r = dx x̂+ dy ŷ + dz ẑ. (10.4.3)

What do you know? The expression for z leads to

dz = 2x dx+ 2y dy. (10.4.4)

In rectangular coordinates, it is natural to consider infinitesimal displacements
in the x and y directions. In the x direction, y is constant, so dy = 0, and we
obtain

d~r1 = dx x̂+ 2x dx ẑ = (x̂+ 2x ẑ) dx. (10.4.5)
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Similarly, in the y direction, dx = 0, which leads to

d~r2 = dy ŷ + 2y dy ẑ = (ŷ + 2y ẑ) dy. (10.4.6)

Putting this together, we obtain

d ~A = d~r1 × d~r2 = (x̂+ 2x ẑ)× (ŷ + 2y ẑ) dx dy
= (−2x x̂− 2y ŷ + ẑ) dx dy (10.4.7)

for the vector surface element, and

dA = |−2x x̂− 2y ŷ + ẑ| dx dy =
√

1 + 4x2 + 4y2 dx dy (10.4.8)

for the scalar surface element. Can you repeat this computation in cylindrical
coordinates? (See Section 11.4 for the answer.)

This construction emphasizes that “area” is really a vector, whose direction
is perpendicular to the surface, and whose magnitude is the area. Note that
there are always two choices for the direction; choosing one determines the
orientation of the surface.

When using (10.4.1) and (10.4.2), it doesn’t matter how you chop up the
surface. It is of course possible to get the opposite orientation, for instance by
interchanging the roles of d~r1 and d~r2. Rather than worrying too much about
getting the “right” orientation from the beginning, it is usually simpler to check
after you’ve calculated d~S whether the orientations you’ve got agrees with the
requirements of the problem. If not, insert a minus sign.

Just as a curve is a 1-dimensional set of points, a surface is 2-dimensional.
When computing line integrals, it was necessary to write everything in terms of
a single parameter before integrating. Similarly, for surface integrals you must
write everything, including the limits of integration, in terms of exactly two
parameters before starting to integrate.

Finally, a word about notation. You will often see dS instead of dA, and
d~S instead of d ~A; most authors use dA in the xy-plane.

10.5 Vector Surface Elements
In this section, you will find the vector surface elements for common shapes
with high symmetry.

Activity 10.5.1 Surface Elements for Planes, Cylinders, and Spheres.
Using the general formula for the scalar surface elements from Section (10.5.1)
or the vector surface element

d ~A = d~r1 × d~r2 (10.5.1)

find explicit formulas for the vector surface element in each of the following
cases:
• a plane in both rectangular and polar coordinates;

• the three surfaces (top, bottom, and curved side) of a cylinder with finite
length;

• the surface of a sphere.

Answer. In this activity, you should have obtained the following common
surface elements:

(plane) z = const : d ~A = dx dy ẑ;
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(plane) z = const : d ~A = s ds dφ ẑ;

(top of cylinder) z = const : d ~A = s ds dφ ẑ;

(bottom of cylinder) z = const : d ~A = −s ds dφ ẑ;

(side of cylinder) s = const : d ~A = s dφ dz ŝ;

(sphere) r = const : d ~A = r2 sin θ dθ dφ r̂.

Figure 10.5.1 A disk oriented upward (left) and downward (right).
In each of these examples, the direction of the vector surface element is given

by the basis vector associated with the coordinate that you held constant when
describing the surface — up to sign. This sign corresponds to a choice about
the orientation of the surface. The standard conventions, adopted above, are to
orient the surface element outward for a closed surface such as a sphere, and
upward otherwise, unless otherwise stated. In the absence of such a convention,
each of the surface elements above would have to be preceded by a factor of
±1. Compare the two drawings in Figure 10.5.1.

When using formula (10.5.1), the choice of orientation is determined by
the order in which d~r1 and d~r2 are multiplied. By convention, one usually
computes d ~A = d~r1 × d~r2, so the orientation is determined by the choice of
which vector is d~r1, and which is d~r2. It is up to you to choose this labeling to
correctly match the desired orientation. Which orientation is determined by
the choices shown in Figures 10.4.1 and Figure 11.4.1?

Formula (10.5.1) will work for all kinds of complicated surfaces, so we wanted
you to get practice in learning how to use it. However, when a surface can be
described as a “coordinate equals constant” surface in an orthogonal coordinate
system, then the cross product is trivial. You can think of the scalar area
element as an infinitesimal “rectangle” whose area is just the product of the
infinitesimal lengths of the two sides.

10.6 Scalar Surface Integrals
Consider again the example in Section 11.1, which involved the part of the
plane x+ y + z = 1 which lies in the first quadrant. Suppose you want to find
the average height of this triangular region above the xy-plane. To do this,
chop the surface into small pieces, each at height z = 1 − x − y. In order to
compute the average height, we need to find

avg height = 1
area

∫
S

z dA (10.6.1)



CHAPTER 10. INTEGRATION 114

where the total area of the surface can be found either as

area =
∫
S

dA (10.6.2)

or from simple geometry. So we need to determine dA. But we already know
d ~A for this surface from (11.1.5)! It is therefore straightforward to compute

dA = |d ~A| = |x̂+ ŷ + ẑ| dx dy =
√

3 dx dy (10.6.3)

and therefore

avg height = 1√
3/2

∫ 1

0

∫ 1−x

0
(1− x− y)

√
3 dy dx = 1

3 . (10.6.4)

10.7 Volume Integrals
The basic building block for volume integrals is the infinitesimal volume, ob-
tained by chopping up the volume into small "parallelepipeds". Our approach for
surface integrals can be extended to volume integrals using the triple product.
The volume element becomes

dτ = (d~r1 × d~r2) · d~r3 (10.7.1)

for the d~r’s computed for (any!) 3 non-coplanar families of curves. 1 (The
volume element is often written as dV , but we prefer dτ to avoid confusion with
the electrostatic potential V .) Using the natural families of curves in spherical
coordinates, we could take

d~r1 = r dθ θ̂

d~r2 = r sin θ dφ φ̂

as before, and add
d~r3 = dr r̂ (10.7.2)

leading to
dτ = r2 sin θ dr dθ dφ (10.7.3)

as expected. For any orthogonal coordinate system, this method is of course
equivalent to visualizing a small coordinate box, and multiplying the lengths of
the three sides.

1The triple product has a cyclic symmetry, but the orientation matters — the order must
be chosen so that dτ is positive.
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Vector Surface Integrals

11.1 Flux
At any give point along a curve, there is a natural vector, namely the (unit)
tangent vector T̂ . Therefore, it is natural to add up the tangential component
of a given vector field along a curve. When the vector field represents force,
this integral represents the work done by the force along the curve. But there is
no natural tangential direction at a point on a surface, or rather there are too
many of them. The natural vector at a point on a surface is the (unit) normal
vector n̂, so on a surface it is natural to add up the normal component of a
given vector field; this integral is known as the flux of the vector field through
the surface.

We already know that the vector surface element is given by

d ~A = d~r1 × d~r2. (11.1.1)

Since d~r1 and d~r2 are both tangent to the surface, d ~A is perpendicular to the
surface, and is therefore often written

d ~A = n̂ dA. (11.1.2)

Putting this all together, the flux of a vector field ~F through the surface is
given by

flux of ~F through S =
∫
S

~F · d ~A. (11.1.3)
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Figure 11.1.1 A triangular region in the first octant, chopped parallel to the
x- and y-axes.

We first consider a problem typical of those in calculus textbooks, namely
finding the flux of the vector field ~F = z ẑ up through the part of the plane
x+ y+ z = 1 lying in the first octant, as shown in Figure 11.1.1. We begin with
the infinitesimal vector displacement in rectangular coordinates in 3 dimensions,
namely

d~r = dx x̂+ dy ŷ + dz ẑ. (11.1.4)
A natural choice of curves in this surface is given by setting y or x constant, so
that dy = 0 or dx = 0, respectively. On the surface, we have dx+ dy + dz = 0,
which we can use to eliminate one variable along each of these curves. We thus
obtain

d~r1 = dx x̂+ dz ẑ = (x̂− ẑ) dx,
d~r2 = dy ŷ + dz ẑ = (ŷ − ẑ) dy,

where we have used what we know (the equation of the plane) to determine
each expression in terms of a single parameter. The surface element is thus

d ~A = d~r1 × d~r2 = (x̂+ ŷ + ẑ) dx dy (11.1.5)

and the flux becomes 1∫
S

~F · d ~A =
∫
S

z dx dy

=
∫ 1

0

∫ 1−y

0
(1− x− y) dx dy = 1

6 . (11.1.6)

The limits were chosen by visualizing the projection of the surface into the
xy-plane, which is a triangle bounded by the x-axis, the y-axis, and the line
whose equation is x+ y = 1. Note that this latter equation is obtained from
the equation of the surface by using what we know, namely that z = 0.

Just as for line integrals, there is a rule of thumb which tells you when to
stop using what you know to compute surface integrals: Don’t start integrating
until the integral is expressed in terms of two parameters, and the limits in terms
of those parameters have been determined. Surfaces are two-dimensional!

1Some readers will prefer to change the domain of integration in the second integral to be
the projection of S into the xy-plane. We prefer to integrate over the actual surface whenever
possible.
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11.2 Dot Products and Components
A field can be expressed in many different coordinate systems. For example, in
rectangular coordinates, the electric field is

~E = Ex x̂+ Ey ŷ + Ez ẑ.

Similarly, in cylindrical coordinates,

~E = Es ŝ+ Eφ φ̂+ Ez ẑ.

What is the x-component of ~E? Surely just Ex. The s-component? Es.
How could you find these components, given ~E? The (scalar) component

of a vector field in a given direction is just the projection in that direction.
Projections are dot products. Thus,

Ex = ~E · x̂

and

Es = ~E · ŝ.

Given a surface, it makes sense to ask what the component E⊥ of the electric
field is, perpendicular to the surface. By the same reasoning, we have

E⊥ = ~E · n̂

where n̂ is the unit normal to the surface.
The component parallel to the surface, E‖ is more subtle, since there are

an infinite number of directions parallel to the surface. One way around this
problem is to speaks of vector components, by attaching the direction to the
scalar component. For instance

~E⊥ = E⊥ n̂.

We can now define the parallel (vector) component of ~E as the vector that is
left after the perpendicular component is subtracted

~E‖ = ~E − ~E⊥

from which the magnitude E‖ = |~E‖| can be computed using the Pythagorean
Theorem if desired.

11.3 Highly Symmetric Surfaces
One of the most fundamental examples in electromagnetism is the electric field
of a point charge.

The electric field of a point charge q at the origin is given by

~E = q

4πε0
r̂

r2 = q

4πε0
x x̂+ y ŷ + z ẑ

(x2 + y2 + z2)3/2 (11.3.1)

where r̂ is now the unit vector in the radial direction in spherical coordinates.
The first expression clearly indicates both the spherical symmetry of ~E and
its 1

r2 fall-off behavior, whereas the second expression does neither. Given the
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electric field, Gauss’ Law allows one to determine the total charge inside any
closed surface, namely

q

ε0
=
∫
S

~E · d ~A (11.3.2)

which is of course just the Divergence Theorem.
It is easy to determine d ~A on the sphere by inspection; we nevertheless go

through the details of the differential approach for this case. We use “physicists’
conventions” for spherical coordinates, so that θ is the angle from the North
Pole, and φ the angle in the xy-plane. We use the obvious families of curves,
namely the lines of latitude and longitude. Starting either from the general
formula for d~r in spherical coordinates, namely

d~r = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂, (11.3.3)

or directly using the geometry behind that formula, one quickly arrives at

d~r1 = r dθ θ̂,

d~r2 = r sin θ dφ φ̂,

d ~A = d~r1 × d~r2 = r2 sin θ dθ dφ r̂,

so that ∫
S

~E · d ~A =
∫ 2π

0

∫ π

0

q

4πε0
r̂

r2 · r
2 sin θ dθ dφ r̂ = q

ε0
(11.3.4)

as expected.

11.4 Less Symmetric Surfaces
The reader may have the feeling that two quite different languages are being
spoken here. The tilted plane in Section 11.1 was treated in essentially the
traditional manner found in calculus textbooks, using rectangular coordinates.
While the “use what you know” strategy may be somewhat unfamiliar, the
basic idea should not be. On the other hand, the examples in Section 11.3
will be quite unfamiliar to most mathematicians, due to their use of adapted
basis vectors such as r̂. Mastering these examples helps develop experience
looking for symmetry and making geometric arguments. At the same time, not
all problems have symmetry!

We argue, however, that the approach being presented here is much more
flexible than may appear at first sight. We demonstrate this flexibility by
integrating over a paraboloid, the classic example found in calculus textbooks.

We compute the flux of the axially symmetric vector field

~F = s ŝ = x x̂+ y ŷ (11.4.1)

“outwards” through the part of the paraboloid z = s2 lying below the plane
z = 4. The first thing we need is the formula for d~r in cylindrical coordinates,
which is a straightforward generalization of (8.3.1) in polar coordinates, namely

d~r = ds ŝ+ s dφ φ̂+ dz ẑ. (11.4.2)
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Figure 11.4.1 Chopping up a paraboloid in rectangular coordinates.
Next, we need two families of curves on the paraboloid; the natural choices

are those with r = constant or φ = constant, respectively, as shown in Fig-
ure 11.4.1. If s is constant, so is z, and we have simply

d~r1 = s dφ φ̂. (11.4.3)

If φ is constant, there will be no φ̂ term in d~r2, but we must still use what we
know to compute dz = 2s ds, thus obtaining

d~r2 = ds ŝ+ 2s ds ẑ. (11.4.4)

Taking the cross product leads to (compare (10.4.7))

d ~A = d~r1 × d~r2 = (2s2 ŝ− sẑ) ds dφ (11.4.5)

and at this point we must check that we have chosen the correct orientation.
(We have, since the coefficient of ẑ is negative.) The rest is easy: Compute the
dot product, determine the limits, and do the integral. This results in∫

S

~F · d ~A =
∫ 2π

0

∫ 2

0
2s3 ds dφ = 16π. (11.4.6)

It is of course also possible to use rectangular coordinates to determine
d ~A, choosing curves on the paraboloid z = x2 + y2 with x = constant or
y = constant. The resulting integral cries out for polar coordinates — which
turns it into the same integral as the above.

There is however a significant difference between these two approaches:
Drawing the curves on the paraboloid with s or φ held constant is easy; drawing
the curves with x or y held constant is not. Try it! 1 The rectangular
coordinate approach relies for its geometric intuition on the generic figure found
in most textbooks which maps the rectangular “parameter space” into the
surface, whereas the cylindrical coordinate approach starts by choosing the
geometrically obvious curves in the given surface.

1Most graphing packages, such as Maple, will automatically draw the latter set of curves
for you. It is not always straightforward to get them to draw the former instead!
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Derivatives of Vector Fields

12.1 The Definition of Divergence

Figure 12.1.1 Computing the vertical contribution of the flux through a small
rectangular box.

Consider a small closed box, with sides parallel to the coordinate planes, as
shown in Figure 12.1.1. What is the flux of an arbitrary vector field ~F out of

120
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the box?
Consider first the vertical contribution, namely the flux up through the top

plus the flux down through the bottom. These two sides each have area element
dA = dx dy, but the outward normal vectors point in opposite directions, that
is

n̂up = ẑ,

n̂down = −ẑ,

so we get ∑
top+bottom

~F · d ~A = ~F (z + dz) · ẑ dx dy − ~F (z) · ẑ dx dy

=
(
Fz(z + dz)− Fz(z)

)
dx dy

= Fz(z + dz)− Fz(z)
dz

dx dy dz

= ∂Fz
∂z

dx dy dz

where we have multiplied and divided by dz to obtain the volume element
dτ = dx dy dz in the third step, and used the limit definition of the derivative
in the final step.

Repeating this argument using the remaining pairs of faces, it follows that
the total flux out of the box is

total flux =
∑
box

~F · d ~A =
(
∂Fx
∂x

+ ∂Fy
∂y

+ ∂Fz
∂z

)
dτ.

Since the total flux is proportional to the volume of the box, it approaches zero
as the box shrinks down to a point. The interesting quantity is therefore the
ratio of the flux to volume; this ratio is called the divergence.

At any point P , we therefore define the divergence of a vector field ~F ,
written ~∇ · ~F , to be the flux of ~F per unit volume leaving a small box around
P . In other words, the divergence is the limit as the box collapses around P of
the ratio of the flux of the vector field out of the box to the volume of the box.
Thus, the divergence of ~F at P is the flux per unit volume through a small box
around P , which is given in rectangular coordinates by

~∇ · ~F = flux
unit volume = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
.

You may have seen this formula before, but remember that it is merely the
rectangular coordinate expression for the divergence of ~F ; the divergence is
defined geometrically as flux per unit volume. Similar computations can be
used to determine expressions for the divergence in other coordinate systems,
see Section B.2 for a sketch of the derivation and Appendix B.2 for the formulas.
Because of the geometric nature of divergence, these expressions turn out to
give the same value at each point in space.

12.2 The Divergence in Two Dimensions
Although the divergence is usually discussed in three dimensions, the construc-
tion in Section 12.1 can also be used in two dimensions. The only significant
change is that a new type of flux must be defined on curves, rather than
surfaces.
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If C is a (simple) closed curve in the plane, it has an inside and an outside.
If the outward normal vector is n̂, then the flux of a vector field ~E out of C is
given by

flux =
∫
C

~E · n̂ ds

where ds = |d~r| denotes infinitesimal arclength.
Applying the argument in Section 12.1 to a small rectangular box yields es-

sentially the same result, namely that the total flux out of the (two-dimensional)
box is some sort of derivative, times the area of the box. Thus, in two dimensions
we define

~∇ · ~E = flux
unit area

and obtain the rectangular coordinate expression

~∇ · ~E = ∂Ex
∂x

+ ∂Ey
∂y

.

When discussing the properties of the divergence, two-dimensional examples
are often given, in part because they are easier to interpret (and to draw!).
Such examples can always be interpreted using the two-dimensional notions
of flux and divergence given in this section, so long as care is taken to note
the different units (area vs. volume) in the two- and three-dimensional cases.
Alternatively, two-dimensional examples can be interpreted as a horizontal slice
of a three-dimensional example, in which the vector field is also horizontal
(no ẑ component), so that there is no flux through the top and bottom faces
of the box. In this interpretation, the height of the box does not affect the
computation, but nonetheless restores the units of flux per unit volume to the
divergence.

The vector fields in Figure 12.2.1 model this behavior. They appear to be
two-dimensional, but are really three-dimensional, as can be seen by clicking
on them and rotating the images. (You may wish to zoom out first, using the
scroll wheel of your mouse, or by right-clicking and selecting "Zoom to fit".)

Figure 12.2.1 Interpreting (horizontal) vector fields as two dimensional.

12.3 Exploring the Divergence
Figure 12.3.1 below shows the relationship between flux and divergence in two
dimensions. You can choose the vector field ~v by entering its components vx
and vy, move the box by dragging its center, and change the size s of the box
by moving the slider.
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Figure 12.3.1 The relationship between flux and divergence.

Activity 12.3.1 Exploring Divergence. Enter the (two-dimensional vector
field of your choice into the applet in Figure 12.3.1 by entering its components.
Determine the flux per unit area at several locations by moving the box and
adjusting the slider. In each case, compare your result (shown in the applet
as flux

area ) with the computed value of the divergence at the center of the box
(shown as ~∇ · ~v

∣∣
P
).

What do you notice?
Hint. Start with vector fields whose components are linear functions of x and
y, then try more complicated functions.
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12.4 The Divergence in Curvilinear Coordinates

Figure 12.4.1 Computing the radial contribution to the flux through a small
box in spherical coordinates.

The divergence is defined in terms of flux per unit volume. In Section 12.1,
we used this geometric definition to derive an expression for ~∇ · ~F in rectangular
coordinates, namely

~∇ · ~F = flux
unit volume = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
.

Similar computations to those in rectangular coordinates can be done using
boxes adapted to other coordinate systems. Not surprisingly, this introduces
some additional scale factors such as r and sin θ. For instance, consider a radial
vector field of the form

~E = Er r̂

where r̂ is the unit vector in the radial direction. The electric field of a point
charge would have this form. What is the flux of ~E through a small box
around an arbitrary point P , whose sides are surfaces with one of the spherical
coordinates held constant, as shown in Figure 12.4.1? Only the two sides which
are parts of spheres contribute, and each such contribution takes the form

~E · d ~A = ±Er r2 sin θ dθ dφ.

An argument similar to the one used in rectangular coordinates leads to

~E · d ~A = ∂

∂r

(
r2Er

)
sin θ dr dθ dφ = 1

r2
∂

∂r

(
r2Er

)
dτ
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where it is important to note that the factor of r2 must also be differentiated.
It now finally follows that

~∇ · ~E = 1
r2

∂

∂r

(
r2Er

)
.

This expression only gives the divergence of the very special vector field ~E
given above. The full expression for the divergence in spherical coordinates
is obtained by performing a similar analysis of the flux of an arbitrary vector
field ~F through our small box; the result can be found in Appendix B.2. This
formula, as well as similar formulas for other vector derivatives in rectangular,
cylindrical, and spherical coordinates, are sufficiently important to the study
of electromagnetism that they can, for instance, be found on the inside front
cover of Griffiths’ textbook, Introduction to Electrodynamics.

12.5 Exploring the Divergence in Polar Coordi-
nates

Figure 12.5.1 below shows the relationship between flux and divergence using
polar coordinates and basis vectors. You can choose the vector field ~v by
entering its components vr and vφ, move the box by dragging its center, and
change the size s of the box by moving the slider.

Figure 12.5.1 The relationship between flux and divergence.

Activity 12.5.1 Exploring Divergence. Enter the (two-dimensional vector
field of your choice into the applet in Figure 12.5.1 by entering its components.
Determine the flux per unit area at several locations by moving the box and
adjusting the slider. In each case, compare your result (shown in the applet
as flux

area ) with the computed value of the divergence at the center of the box
(shown as ~∇ · ~v

∣∣
P
).

What do you notice?
Hint. Start with vector fields whose components are linear functions of r,
then try more complicated functions.



CHAPTER 12. DERIVATIVES OF VECTOR FIELDS 126

12.6 Visualizing Divergence
Recall that

~∇ · ~F ≈
∫
~F · d ~A

volume of box = flux
unit volume (12.6.1)

so that the divergence measures how much a vector field “points out” of a box.

Figure 12.6.1 Two vector fields.
Can we use these ideas to investigate graphically the divergence of a given

vector field?
Activity 12.6.1 The Geometry of Divergence. Consider the two vector
fields in Figure 12.6.1. In each case, can you find the divergence?
Hint. A natural place to start is at the origin. So draw a small box around
the origin, as shown in Figure 12.6.2. 1 Is there flux across the loop?

Figure 12.6.2 The same two vector fields, with loops at the origin.
The figures above help us determine the divergence at the origin, but not

elsewhere. The divergence is a function, which can vary from point to point.
We therefore need to examine loops which are not at the origin. It is useful to
adapt the shape of our loop to the vector field under consideration. Both of
our vector fields are better adapted to polar coordinates than to rectangular
coordinates, so we use polar boxes. Can you determine the divergence using the
loops in Figure 12.6.3? Imagine trying to do the same thing with a rectangular
loop, or even a circular loop.
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Figure 12.6.3 The same two vector fields, with loops not at the origin.
Finally, it is important to realize that not all vector fields which point away

from the origin have divergence. The example in Figure 12.6.4 demonstrates
this important principle; it has no divergence away from the origin. This figure
represents a solution of Maxwell’s equations for electromagnetism, and describes
the electric field of an infinite charged wire

Figure 12.6.4 One more vector field.

12.7 The Divergence Theorem

Figure 12.7.1 The geometry of the Divergence Theorem.
1In two dimensions, both “boxes” are loops. In three dimensions, the oriented box used

to measure circulation is still a loop, but the box used to measure flux is now an ordinary,
3-dimensional box.
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The total flux of a vector field ~F out through a small rectangular box is

flux =
∑
box

~F · d ~A = ~∇ · ~F dτ

But any closed region can be filled with such boxes, as shown in the first
diagram in Figure 12.7.1. Furthermore, the flux out of such a region is just the
sum of the fluxes out of each of the smaller boxes, since the net flux through
any common face will be zero (because adjacent boxes have opposite notions
of “out of”), as indicated schematically in the second diagram in Figure 12.7.1.
Thus, the total flux out of any closed box is given by∫

box

~F · d ~A =
∫

inside

~∇ · ~F dτ.

This relation is known as the Divergence Theorem.

12.8 The Geometry of Curl
Put a paddlewheel into a moving body of water. Depending on the details
of the flow, the paddlewheel might spin. Keeping its center fixed, change the
orientation of the paddlewheel. There will be a preferred orientation, in which
the paddlewheel spins the fastest.

We can investigate this situation for any vector field ~A. Pick a point P and
compute the circulation of ~A around a small loop centered at P . Now change
the orientation of the loop and do it again. The result depends on the size
of the loop, so we divide by its area. There will be a preferred orientation in
which the circulation per unit area will be a maximum. We define the curl of
~A, written ~∇ × ~A, to be the vector whose direction is given by the normal
vector to the plane in which the circulation is greatest, and whose magnitude is
that circulation divided by the area of the loop, in the limit as the loop shrinks
to a point. This construction yields the curl of ~A at P , and we can repeat the
process at any point; the curl of ~A is a vector field.

What is the circulation per unit area at the point P in an arbitrary direction?
That’s just the projection of ~∇× ~A in the given direction. That is, (~∇× ~A) · û
is the (limiting value of) the circulation per unit area around a loop whose
normal vector is û.

By choosing û to be x̂, ŷ, and ẑ in turn, we can therefore compute the
components of ~∇ × ~A in rectangular coordinates. For further details, see
Section 12.9.
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12.9 The Definition of Curl

Figure 12.9.1 Computing the horizontal contribution to the circulation around
a small rectangular loop.

Consider a small rectangular loop in the yz-plane, with sides parallel to the
coordinate axes, as shown Figure 12.9.1. What is the circulation of ~A around
this loop?

Consider first the horizontal edges, on each of which d~r = dy ŷ. However,
when computing the circulation of ~A around this loop, we traverse these two
edges in opposite directions. In particular, when traversing the loop in the
counterclockwise direction, dy < 0 on top and dy > 0 on the bottom. We would
like to compare these two edges, but we have

dytop = −dybot (12.9.1)

so we conventionally set dy = dybot, leading to dytop = −dy. 1 Thus,∑
top+bottom

~A · d~r = − ~A(z + dz) · ŷ dy + ~A(z) · ŷ dy

= −
(
Ay(z + dz)−Ay(z)

)
dy

= −Ay(z + dz)−Ay(z)
dz

dy dz

= −∂Ay
∂z

dy dz (12.9.2)

1A similar argument using a finite box would require integrating around the loop, in which
case the limits of integration would be equal and opposite for these two edges, leading to an
equivalent minus sign when adding the integrals.
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where we have multiplied and divided by dz to obtain the surface element
dA = dy dz in the third step, and used the definition of the derivative in the
final step.

Just as with the divergence, in making this argument we are assuming that
~A doesn’t change much in the x and y directions, while nonetheless caring
about the change in the z direction. We are again subtracting the values at
two points separated in the z direction, so we are canceling the zeroth order
term in z, and therefore need the next order term. This can be made precise
using a multivariable Taylor series expansion.

Repeating this argument for the remaining two sides leads to∑
sides

~A · d~r = ~A(y + dy) · ẑ dz − ~A(y) · ẑ dz

=
(
Az(y + dy)−Az(y)

)
dz

= Az(y + dy)−Az(y)
dy

dy dz

= ∂Az
∂y

dy dz

where care must be taken with the signs, which are different from those
in (12.9.2). Adding up both expressions, we obtain

total yz-circulation =
(
∂Az
∂y
− ∂Ay

∂z

)
dx dy. (12.9.3)

Since this expression is proportional to the area of the loop, it approaches zero
as the loop shrinks down to a point. The interesting quantity is therefore the
ratio of the circulation to area. This ratio is almost the curl, but not quite.

We could have oriented our loop any way we liked. We have a circulation
for each orientation, which we can associate with the normal vector to the loop;
curl is a vector quantity. Our loop has counterclockwise orientation of the loop
as seen from the positive x-axis; we are computing the x̂-component of the curl.

Putting this all together, we define the x̂-component of the curl of a vector
field ~A to be

curl( ~A) · x̂ = yz-circulation
unit area = ∂Az

∂y
− ∂Ay

∂z
. (12.9.4)

The rectangular expression for the full curl now follows by cyclic symmetry,
yielding

curl( ~A) =
(
∂Az
∂y
− ∂Ay

∂z

)
x̂+

(
∂Ax
∂z
− ∂Az

∂x

)
ŷ+

(
∂Ay
∂x
− ∂Ax

∂y

)
ẑ (12.9.5)

which is more easily remembered in the form

curl( ~A) = ~∇× ~A =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ (12.9.6)

An analogous construction can be used in curvilinear coordinates; the results
for spherical and cylindrical coordinates can be found in Appendix B.2, as well
as on the inside front of Griffiths’ textbook, Introduction to Electrodynamics.
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12.10 Exploring the Curl
Figure 12.10.1 below shows the relationship between circulation and curl in two
dimensions. You can choose the vector field ~v by entering its components vx
and vy, move the box by dragging its center, and change the size s of the box
by moving the slider.

Figure 12.10.1 The relationship between circulation and curl.

Activity 12.10.1 Exploring Curl. Enter the (two-dimensional vector field
of your choice into the applet in Figure 12.10.1 by entering its components.
Determine the circulation per unit area at several locations by moving the
box and adjusting the slider. In each case, compare your result (shown in the
applet as circulation

area ) with the computed value of the curl at the center of the
box (shown as ~∇× ~v

∣∣
P
).

What do you notice?
Hint. Start with vector fields whose components are linear functions of x and
y, then try more complicated functions.

12.11 The Curl in Curvilinear Coordinates
Just as with the divergence, similar computations to those in rectangular
coordinates can be done using boxes adapted to other coordinate systems. Not
surprisingly, this introduces some additional factors of r or s (and sin θ). You
can find expressions for curl in both cylindrical and spherical coordinates in
Appendix B.2.

Such formulas for vector derivatives in rectangular, cylindrical, and spherical
coordinates, are sufficiently important to the study of electromagnetism that
they can, for instance, be found on the inside front cover of Griffiths’ textbook,
Introduction to Electrodynamics.

12.12 Exploring the Curl in Polar Coordinates
Figure 12.12.1 below shows the relationship between circulation and curl using
polar coordinates and basis vectors. You can choose the vector field ~v by
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entering its components vr and vφ, move the box by dragging its center, and
change the size s of the box by moving the slider.

Figure 12.12.1 The relationship between circulation and curl.

Activity 12.12.1 Exploring Curl. Enter the (two-dimensional vector field
of your choice into the applet in Figure 12.12.1 by entering its components.
Determine the circulation per unit area at several locations by moving the
box and adjusting the slider. In each case, compare your result (shown in the
applet as circulation

area ) with the computed value of the curl at the center of the
box (shown as ~∇× ~v

∣∣
P
).

What do you notice?
Hint. Start with vector fields whose components are linear functions of r,
then try more complicated functions.

12.13 Visualizing Curl
Recall that

(~∇× ~F ) · n̂ ≈
∮
~F · d~r

area of loop = (oriented) circulation
unit area (12.13.1)

so that the (orthogonal component of the) curl measures how much a vector
field “goes around” a loop.
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Figure 12.13.1 Two vector fields.
Can we use these ideas to investigate graphically the curl of a given vector

field?
Activity 12.13.1 The Geometry of Curl. Consider the two vector fields
in Figure 12.13.1. In each case, can you find the (ẑ-component of the) curl?
Hint. A natural place to start is at the origin. So draw a small box around
the origin, as shown in Figure 12.13.2. Is there circulation around the loop?

Figure 12.13.2 The same two vector fields, with loops at the origin.
The figures above help us determine the curl at the origin, but not elsewhere.

The curl is a vector field, which can vary from point to point. We therefore need
to examine loops which are not at the origin. It is useful to adapt the shape of
our loop to the vector field under consideration. Both of our vector fields are
better adapted to polar coordinates than to rectangular coordinates, so we use
polar boxes. Can you determine the (ẑ-component of the) curl using the loops
in Figure 12.13.3? Imagine trying to do the same thing with a rectangular loop,
or even a circular loop.
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Figure 12.13.3 The same two vector fields, with loops not at the origin.
Finally, it is important to realize that not all vector fields which go around

the origin have curl. The example in Figure 12.13.4 demonstrate this important
principle; it has no curl away from the origin. This figure represents a solution
of Maxwell’s equations for electromagnetism, and describes the magnetic field
due to an infinite current-carrying wire (with current coming out of the page at
the origin).

Figure 12.13.4 One more vector field.

12.14 Stokes’ Theorem

Figure 12.14.1 The geometry of Stokes’ Theorem.
The total circulation of the magnetic field around a small loop is given by

circulation =
∑
box

~B · d~r = (~∇× ~B) · d ~A
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where d ~A = n̂ dA, where n̂ is perpendicular to the (filled in) loop. But
any surface can be filled with such loops, as shown in the first diagram in
Figure 12.7.1. Furthermore, the circulation around the edge of the surface is
just the sum of the circulations around each of the smaller loops, since the
circulation through any common side will be zero (because adjacent loops have
opposite notions of “around”), as indicated schematically in the second diagram
in Figure 12.7.1. Thus, the total circulation around any loop is given by∮

loop

~B · d~r =
∫

inside

(~∇× ~B) · d ~A

This is Stokes’ Theorem.
There is no need for the “inside” of the loop to be planar. 1 Consider

the surface shown in the third diagram in Figure 12.7.1, which has the same
boundary as the original loop. The circulation around interior loops cancels just
as before, and Stokes’ Theorem holds without modification. We like to describe
such surfaces as “butterfly nets”, whose rim is the original loop. Butterfly nets
should be able to catch butterflies! In other words, they need an opening, and
a net. 2

The orientations used in the two integrals in Stokes’ Theorem must be
compatible. This is easy if the loop lies in the xy-plane: Choose the circulation
counterclockwise and the flux upward. More generally, for any loop which is
more-or-less planar, the circulation should be counterclockwise when looking at
the loop from “above”, that is, from the direction in which the flux is being
taken. (So you’re really looking in the direction of negative flux.) An easy way
to remember this is to take the flux up and the circulation counterclockwise
when seen from above, with obvious modifications should the loop be sideways.

But what if the loop is not planar? What about a cylinder which is closed at
one end? There are several strategies which can be used to obtain compatible
orientations.

• Gears: Break up the surface into small loops, which can be thought of as
small gears. Choose an orientation of the surface, and look at the surface
from “above”. As the gears turn counterclockwise, the edge of the surface
also turns; use that orienation to compute the circulation.

• Toothpicks: Think of the surface as a rubber sheet. Move the rubber sheet
so that it is taut across the loop. Choose a compatible orientation using
the “up” and “counterclockwise” rule. Now imagine putting toothpicks
in the surface on the “up” side only, and move the rubber sheet back
to the original position. The direction of the toothpicks gives you the
compatible orientation of the surface.

• Left-Hand Rule: Walk around the edge of the surface, with your head up.
That is, face in the direction T̂ , with your head in the direction n̂ (where
d~r = T̂ ds and d ~A = n̂ dA). In a compatible orientation, your left hand
should point along the surface; if it doesn’t, turn around (or stand on
your head, but not both).

1There is also no need for the loop itself to be planar.
2Can you imagine a butterfly net with more than one opening? Can you work out the

form of Stokes’ Theorem on such a net?
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12.15 Second derivatives

Figure 12.15.1 A closed path.
A conservative vector field is the gradient of some function, for example

~E = −~∇V

But integrals of conservative vector fields are independent of path, so that
evaluating the integral along two different paths between the same two points
yields the same answer, as illustrated in [2]. Combining two such paths into a
closed loop changes the orientation of one path, as shown in Figure 12.15.1, and
the integrals now cancel; the integral of ~∇V around any closed loop vanishes.
Using Stokes’ Theorem, we therefore obtain∫

inside

(~∇× ~∇V ) · d ~A =
∮

loop

~∇V · d~r = 0. (12.15.1)

Equivalently, the Master Formula tells us how to evaluate the left-hand side
of (12.15.1), namely by evaluating the potential at the endpoints. Since both
endpoints are the same, the integral must be zero. But since the left-hand side
must vanish for any closed curve, the integrand must be identically zero. We
have proved that

~∇× ~∇V = ~0

for any function V .
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Figure 12.15.2 Splitting a closed surface into two pieces. The orientations
shown are compatible with Stokes’ Theorem.
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A similar argument can be used to show that

~∇ · (~∇× ~F ) = 0

for any vector field ~F . Consider a closed surface. Cut it in half along some
closed curve, as shown in the first diagram in Figure 12.15.2. Then each piece
of the surface is a butterfly net with the same rim, as shown in the second
diagram in Figure 12.15.2 (with the pieces separated for clarity). Applying
Stokes’ Theorem to each piece leads to the conclusion that the flux of the curl
of ~F upward through each piece must be the same, so that the flux up through
the top cancels the flux downward through the bottom. This cancellation forces
the flux of the curl of ~F outward through the entire surface to vanish. Using
the Divergence Theorem, we get∫

inside

~∇ · (~∇× ~F ) dτ =
∫

surface

(~∇× ~F ) · d ~A = 0

This argument shows that the first integral is zero over any volume, forcing the
integrand to vanish, as claimed.

The above identities can also be derived by direct computation, most easily
done in rectangular coordinates. For instance, when calculating the curl of ~∇V ,
each component will contain mixed second-order partial derivatives of V , for
example:

~∇× ~∇V = ...+
(
∂

∂x

∂V

∂y
− ∂

∂y

∂V

∂x

)
ẑ

But partial derivatives can be taken in any order, so the derivatives above
cancel, thus proving the identity. Similar second-order derivatives arise when
computing the divergence of ~∇× ~A, establishing the other identity.

12.16 The Laplacian
One second derivative, the divergence of the gradient, occurs so often it has its
own name and notation. It is called the Laplacian of the function V , and is
written in any of the forms

4V = ∇2V = ~∇ · ~∇V.

In rectangular coordinates, it is easy to compute

4V = ~∇ · ~∇V = ∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 .

The simplest homogeneous partial differential equation involving the Lapla-
cian

∇2V = 0 (12.16.1)

is called Laplace’s equation. The inhomgeneous version

∇2V = f(~r) (12.16.2)

is known as Poisson’s equation. There are many important techniques for
solving these equations that are beyond the scope of this text.
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Power Series

13.1 Definition of Power Series
Form of Power Series. Most functions can be represented as a power
series, whose general form is given by:

f(z) =
∞∑
n=0

cn(z − a)n

= c0 + c1(z − a) + c2(z − a)2 + c3(z − a)3 + . . . (13.1.1)

In this equation, for a given function f(z), a is a constant that you get to
choose and the cn’s are constants that will be different if you change a.

Notation 13.1.1 Power Series. In Equation (13.1.1), z is the independent
variable of the function, a represents the point “around” which the function
is being expanded, each of the constants cn is called the coefficient of the nth
term, and the entire nth term, i.e. cn(z − a)n, is called the nth order term.
For further information about the geometric meaning of these new vocabulary
words, see Section 13.4.

Informal theorem: A deep mathematical theorem guarantees that
for each sufficiently smooth function f(z) and point a, the coefficients
cn are unique. You can always find the coefficients, using the general method
in Section 13.2. However, you should also gradually accumulate as many
short-cut strategies as you can for finding these coefficients. The theorems in
Section 13.10 will help.

13.2 Calculating Power Series Coefficients
Derivation of the Formula for the Coefficients of a Power Series. One
way of finding the coefficients is using Taylor’s theorem, derived as follows:

We evaluate both sides of equation (13.1.1) at the point z = a, to obtain:

f(a) = c0 + c1(a− a) + c2(a− a)2 + c3(a− a)3 + . . . (13.2.1)

Since all of the terms, except the first, on the right hand side of (13.2.1) are
zero, the equation simplifies to:

c0 = f(a) (13.2.2)

139
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To find the next coefficient, c1, we first differentiate (13.1.1)

f ′(z) = c1 + 2c2(z − a) + 3c3(z − a)2 + . . . (13.2.3)

We then evaluate (13.2.3) at z = a to obtain

c1 = f ′(a) (13.2.4)

We continue to differentiate (13.2.3) and then evaluate at z = a, reordering
the equation as necessary

f ′′(z) = 2c2 + (3)(2)(z − a) + . . .

c2 = 1
2f
′′(a)

The nth coefficient is given by

cn = 1
n!

dn

dzn
f(z)

∣∣∣
z=a

(13.2.5)

= 1
n! f

(n)(a) (13.2.6)

where the last line is just a common notation for the previous line.

Notation. i.e. the symbol f (n) means to take n derivatives of f .
Make sure to evaluate the derivatives at z = a only after you have taken

the required number of derivatives.
By plugging these values of the coefficients into Equation (13.1.1), we obtain

the following form of the power series:

f(z) =
∞∑
n=0

1
n!

dn

dzn
f(a) (z − a)n (13.2.7)

Sensemaking 13.2.1 Why is there a factor of 1/n! in (13.2.6), the expression
for the nth coefficient?

To check your understanding of this section you should complete the following
activity.

Activity 13.2.2
1. Find the first five nonzero coefficients for sin(θ) expanded around the

origin.

2. Write out a series approximation, correct to fourth order, for sin(θ)
expanded around the origin.

sin(θ) =

3. Find the first four nonzero coefficients for sin(θ) expanded around θ0 = π
6 .

4. Write out a series approximation, correct to fourth order, for sin(θ)
expanded around θ0 = π

6 .
sin(θ) =

Hint. Some important observations are given below:

1. Pay attention to the name of the independent variable. The equation for
the coefficients is given in terms of the variable z. What is the independent
variable in sin θ?
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2. Commonly, but not always, there are an infinite number of terms in a
power series expansion. Unless you can find a general expression for the
coefficients, it will take you an infinite amount of time to find all of them.
In practice, one usually stops at some stage. Some language for this:
“find the first four non-zero terms” means find the coefficients for the four
lowest powers of the independent variable, continuing until you have four
that are not zero; “find the expansion correct to fourth order” means find
the coefficients for all of the low powers of the independent variable, up
to and including the fourth power.

3. If you are asked to find the power series expansion around z = a, then
you must plug the number a into all of the derivatives.

4. Your final answer for a power series expansion should be of the form

f(z) = c0 + c1(z − a) + c2(z − a)2 + c3(z − a)3 + . . . (13.2.8)

or
f(z) ≈ c0 + c1(z − a) + c2(z − a)2 + c3(z − a)3 (13.2.9)

where you have plugged in numbers for all of the cn and for a. Use the
first form of the equation, with an equals sign, if you include the symbol
. . . to remind yourself that there are (an infinite number of) terms that
you have not written down. Use the second form of the equation, with an
approximately equals sign, if you have truncated the series, leaving out
(a possibly infinite number of) terms.

13.3 Visualization of Power Series Approxima-
tions

In the activities in this section you have the opportunity to explore what it
means to approximate a given function with a power series expansion, truncated
at different orders.
Activity 13.3.1 Visualization of Power Series Approximations. In
the Sage code below or this Mathematica notebook1, you will begin with the
function f(θ) = sin θ. Look at the first few terms of its power series. Using the
coefficients that you found in Activity 13.2.2, you can plot both the function
sin θ and its various approximations found by truncating the power series, first
after one non-zero term, then after two non-zero terms, etc. Write down as
many features as you can of these approximations. In particular, answer the
following questions:

1. For what values of θ is the approximation a “good” one? What is the
definition of “good”?

2. Does the range of good values of θ depend on the order of the approxima-
tion? If so, how?

3. A function f(z) is called symmetric if the graph of the function for negative
values of its argument is the mirror reflection (with the vertical axis acting
as mirror) of the graph of the function for positive values of its argument,
i.e. if f(−z) = f(z). Similarly, a function is called antisymmetric if the
graph of the function for negative values of its argument is the negative of
the mirror reflection (with the vertical axis acting as mirror) of the graph
of the function for positive values of its argument, i.e. if f(−z) = −f(z).

math/vfpowerapprox.nb
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Is the function f(z) symmetric, antisymmetric, or neither? What about
the various terms in the power series expansion?

Answer. Notice that if you truncate a power series, then you are looking at a
polynomial whose dominant term (i.e. highest power) is the highest term that
you kept in the power series. Since sin θ is bounded for large θ and a polynomial
in θ is not bounded, the first few terms of the power series will be a terrible
approximation for the function if |θ| is large enough. However, as you keep
more and more terms in the series, the truncated series is a better and better
approximation for the function for a larger and larger range of values of θ.

This computer algebra worksheet began by approximating sin θ by θ near
the origin. This small angle approximation may be familiar to you from your
study of the motion of a pendulum. Higher order terms add more higher order
polynomials and therefore add more “bumps” to the curve; the graph of sin θ
has infinitely many bumps. It is remarkable that the power series for sin θ
converges for all values of θ.

You can see from the graphs that all even positive integer powers of z are
symmetric; all odd positive integer powers are antisymmetric. Since the function
f(θ) = sin θ is an odd function of θ, only the odd powers of θ appear in the
power series expansion. You can see this antisymmetry in Figure Figure 13.3.1.

Figure 13.3.1 The function sin θ and three approximations formed from trun-
cating the power series after the first, second, and third non-zero terms (i.e. at
the first, third, and fifth order.)

The Sage code below allows you to plot both a function f(x) (entered at
line 2) and your choice of polynomial approximation p(x) (entered at line 3).
The defaults are f(x) = sin x and p(x) = x (the first-order term). You can
change these defaults to look at any reasonable function and any order of
approximation.

x=var(’x’)
f(x)=sin(x)
p(x)=x
F=plot(f(x) ,(x,-5,5))
P=plot(p(x) ,(x,-5,5),ymin=-2,ymax=2,color=Color(’purple ’))
F+P

1math/vfpowerapprox.nb
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See Figure 13.3.1.

Activity 13.3.2 Power Series Expansions around Points Other than
the Origin. You can (and should) also alter the same Sage or Mathematica
code to make a power series approximation that fits a function well somewhere
other than at the origin by writing the power series expanded “around” some
other point such as θ = π

6 .

13.4 Discussion of Approximations using Power
Series

Why should you care about power series? One reason is because they allow us
to approximate functions at a point to any desired accuracy.

For instance, consider the function h(x) = −1− 2x+ x2. Draw its graph.

Figure 13.4.1 The graph of the polynomial h(x) = −1− 2x+ x2.
Notice that we have chosen a particularly simple function for this example,

a polynomial. Just by looking at it; you can see that the function already has
the form of a power series with only three nonzero terms. Its power series,
expanded around the origin, is just the algebraic expression for the function
itself. Obviously, there is no reason for you to approximate a function this
simple. We are using this simple example so that you can think about the
separate terms quickly and easily in your head. In Section 13.2 and Section 13.3
you have the opportunity to work with the power series for sin θ, which has an
infinite number of terms. You will have many chances to see why power series
approximations are useful for more complicated functions later in this text.

At the origin x = 0, the value of the function is −1. So, the zeroth order
approximation is just the constant function −1. It agrees with the value of
the function exactly at x = 0, but otherwise is a pretty lousy approximation,
see Figure 13.4.2. The slope of this graph at x = 0 is given by the derivative,
namely 2. The linear approximation at the origin to this function is therefore
the straight line y = −1 − 2x. Where is this linear approximation for this
function a “good” approximation?



CHAPTER 13. POWER SERIES 144

Figure 13.4.2 The graph of the polynomial h(x) = −1 − 2x + x2 (black)
together with its zeroth order (constant) approximation at the origin (blue)
and its first order (linear) approximation at the origin (red).

The approximation that we found above, which was a first order series
expansion around x = 0 isn’t a very good approximation near x = 1. We can
find a better approximation if we choose to expand around another point, say
x = 1, see Figure 13.4.3. The expansion of h around 1 has just two terms,
namely h(x) = −2 + (x− 1)2. The absence of a linear term in this expansion
tells us that the graph is horizontal at x = 1.

Figure 13.4.3 The graph of the polynomial h(x) = −1 − 2x + x2 (black)
together with its zeroth order (and linear) approximation at x = 1 (blue).

You can explore power series approximations for yourself using the applet
in Section 13.5

13.5 Using Technology to Explore Power Series
Approximations

The applet below in Figure 13.5.1 shows power series expansions of different
orders for any (reasonable) function, at different points, corresponding to the
data entered. You can change what function you are looking at in the box near
the top of the graph.
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Figure 13.5.1 Power series approximations.

13.6 Guessing Power Series from Graphs
Activity 13.6.1 Guessing Power Series Coefficients. In Figure 13.6.1
below, use the sliders to match the given function (shown in green) exactly.
Use only graphical reasoning.

When you are done, make a note of any relationship you see between the
values of the coefficients and the shape of the graph.

Figure 13.6.1 An applet for manipulating the individual power series coeffi-
cients.

Hint. Only three of the sliders need to be set to nonzero values.

13.7 Common Power Series
The following power series for common functions are used so often in approxi-
mations in physics, that you should make the extra effort to memorize the first
few terms of each one.
The symbol ∀ means “for all”

sin(z) = z − z3

3! + z5

5! −
z7

7! + . . .

=
∞∑
n=0

(−1)n z2n+1

(2n+ 1)! valid ∀z
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cos(z) = 1− z2

2! + z4

4! −
z6

6! + . . .

=
∞∑
n=0

(−1)n z2n

(2n)! valid ∀z

ez = 1 + z + z2

2! + z3

3! + z4

4! + . . .

=
∞∑
n=0

zn

n! valid ∀z

ln(1 + z) = z − z2

2 + z3

3 −
z4

4 + . . .

=
∞∑
n=1

(−1)n+1 z
n

n
valid for |z| < 1

(1 + z)p = 1 + pz + p(p− 1)
2! z2 + p(p− 1)(p− 2)

3! z3 + . . .

=
∞∑
n=0

p!
n!(p− n)! z

n valid for |z| < 1

The factorial function can be extended to the domain of all complex num-
bers, except the negative integers. See “gamma function” in any advanced
mathematical methods text.

The last example, called a binomial expansion is valid even when p is not
a positive integer. You may not know the meaning of p! in these cases, but it
does have a definition. If necessary, just use the first line of the power series
for (1 + z)p instead of the second line.

13.8 Dimensions in Power Series
When we consider a power series expansion of a special function such as

sin z = z − 1
3!z

3 + 1
5!z

5 + . . . (13.8.1)

we can notice an interesting fact. If the variable z were to have any kind of
dimensions (e.g. length, L) then the power series expansion of that special
function would add together terms with different dimensions (L, L3, L5, etc.).
Since this is impossible, it implies that the argument of such special functions
must always be dimensionless. This fact provides a quick check in many long
algebraic manipulations. Look for expressions like sin x

a rather than sin x, where
a is a physical parameter with the same dimensions as x.

Sensemaking 13.8.1 Logarithms (Optional, Advanced). Is the loga-
rithm function an exception to this rule?
Answer. Consider the logarithm rule

ln(ab) = ln(a) + ln(b) (13.8.2)

if a has non-trivial dimensions, but ab is dimensionless. Then the power series
expansion of the left-hand side of (13.8.2) will be a sum of dimensionless terms,
as expected, but the power series expansion of the right-hand side of (13.8.2)
might appear to have terms of different dimensions. The resolution is that the
expansion parameters a and b are really a

1 and b
1 , where the factors of 1 have

the appropriate dimensions to make the expansion parameters dimensionless.
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13.9 Convergence of Power Series
Most often, we use a power series for real values of its independent variable,
but they work perfectly well for complex variables. It is actually easier to
study the set of values for which a power series is valid, called its region or
circle of convergence, if we think of it as a function of a complex variable. If a
function has a power series expansion around some point a, then the circle of
convergence extends to the nearest point at which the function is not analytic.
(Briefly, a function which is not analytic is singular in some way. A function
is certainly not analytic at any point at which its value becomes infinite or
at a branch point of a root.) For example, the function 1

z2+1 seems perfectly
well-behaved if z is real, but blows up if z = ±i. If we expand this function in
a power series around z = 0, using the binomial expansion in Section 13.7, the
resulting series is valid for |z| ≤ 1, i.e. inside a circle with radius 1.

13.10 Theorems about Power Series
Theorem 13.10.1 Uniqueness of Power Series. The power series of a
function, if it exits, is unique, i.e. there is at most one power series of the
form

∑∞
n=0 cn(z − a)n which converges to a given function within a circle of

convergence centered at a. We call this a power series “expanded around a”.
This theorem is an open invitation to collect a bag of cute tricks. It doesn’t

matter how you find a series for a function, once you have it, it is the series.
The rest of the theorems in this section should be in your bag of cute tricks.
Scientists use these theorems, rather that the method in Section 13.2 to find
series expansions whenever possible. We give these theorems without proof,
but include one or more examples of how each is used, in practice. It is worth
taking the time to work carefully through each of these short examples.

Theorem 13.10.2 Differentiation and Integration of Power Series. A
power series may be differentiated or integrated term by term. The resulting
series converges to the derivative or integral of the function represented by the
original series within the same circle of convergence as the original series.
Example 13.10.3

sin z =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)! ∀z

cos z = d

dz
sin z =

∞∑
n=0

(−1)n(2n+ 1)z2n

(2n+ 1)!

=
∞∑
n=0

(−1)nz2n

(2n)! ∀z

�

Theorem 13.10.4 Substitution in Power Series. One series may be
substituted into another provided that the values of the substituted series are
inside the circle of convergence of the other series.
Example 13.10.5

1
1 + z

= 1− z + z2 − z3 + · · · =
∞∑
n=0

(−z)n |z| < 1
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1
1 + sin z = 1−

∞∑
n=0

(−1)nz2n+1

(2n+ 1)! +
( ∞∑
n=0

(−1)nz2n+1

(2n+ 1)!

)2

−

( ∞∑
n=0

(−1)nz2n+1

(2n+ 1)!

)3

+ . . .

= 1− z + z2 +
(

1
3! − 1

)
z3 + . . . | sin z| < 1

What happens if you try this same trick to find a power series for 1/(1 + cos z)?
Why? �

Example 13.10.6

z − π

2 = z − π

2 ∀z

Note: This is a very short power series with just two non-zero terms.

cos(z) = − sin(z − π

2 )

=
∞∑
n=0

(−1)n+1(z − π
2 )2n+1

(2n+ 1)! ∀z

Note: Starting with a power series for sin(z) expanded around z = 0, we have
obtained a power series for cos(z) expanded around z = π

2 . �

Theorem 13.10.7 Adding, Subtracting, and Multiplying Power Se-
ries. Two power series of like powers may be added, subtracted, or multiplied.
The resulting series converges at least within the common circle of convergence.
Example 13.10.8

2
1− z2 = 1

1 + z
+ 1

1− z
= (1− z + z2 − z3 + . . . ) + (1 + z + z2 + z3 + . . . )
= 2(1 + z2 + z4 + . . . ) |z| < 1

Compare this to the result you would get using the previous theorem. Which
method is faster? �

Example 13.10.9

sin z
1 + z

=
(
z − z3

3! + z5

5! + . . .

)(
1− z + z2 − z3 + z4 − z5)

= z − z2 +
(
− 1

3! + 1
)
z3 +

(
1
3! − 1

)
z4

+
(

1
5! −

1
3! + 1

)
z5 + . . . |z| < 1

Compare this series to the series for the function 1− 1
1+sin(z) in Example 13.10.5.

What can you conclude about the wisdom of assuming two series are the same
if their first three terms are identical? �

Theorem 13.10.10 Dividing Power Series. Two power series expanded
around the same point may be divided. If the leading term(s) of the denominator
series is not zero, or if the zero(s) is canceled by the numerator, then the
resulting series converges within some circle. If the radius of convergence of the



CHAPTER 13. POWER SERIES 149

numerator and denominator series are r1 and r2, respectively, and the distance
from the origin of the circles to the nearest zero of the denominator series is s,
then the quotient series converges at least inside the smallest of the three circles
of radii r1, r2, and s.

Example 13.10.11 Try the previous example sin z/(1 + z) using synthetic
division, instead. Is this method easier or harder? Imagine what you would
do if the denominator were a power series with an infinite number of non-zero
terms. �

Theorem 13.10.12 Power Series Around Points Other than Zero. The
series expansions for most functions recorded in books are expansions around
the point z = 0. To expand around a point a 6= 0 write every z which appears
in the function as (z − a) + a, simplify creatively, and use Theorem 13.10.4.

Example 13.10.13 Expand sin z around z = π.

sin z = sin[(z − π) + π]
= sin(z − π) cosπ + cos(z − π) sin π
= − sin(z − π)

= −
∞∑
n=0

(−1)n(z − π)2n+1

(2n+ 1)! ∀z

�



Chapter 14

Vector Spaces

14.1 Definition of a Vector Space
In this section, we give the formal definitions of a vector space and list some
examples.

Definition 14.1.1 Vector Space. A set of objects (vectors) {~u,~v, ~w, . . . }
is said to form a linear vector space over the field of scalars {λ, µ, . . . }
(e.g. real numbers or complex numbers) if:

1. the set is closed, commutative, and associative under (vector) addition;

2. the set is closed, associative, and distributive under multiplication by a
scalar;

3. there exists a zero vector ~0 that leaves other vectors unchanged under
addition;

4. multiplication by the scalar identity 1 leaves the vector unchanged;

5. every vector ~v have a corresponding negative vector −~v such that
~v + (−~v) = ~0;

♦
The trick here is not only to identify the set of objects that are in the vector

space, but also what is meant by addition of vectors and scalar multiplication.
Some examples of vector spaces are:

1. Forces on a point particle that can move in a plane (i.e. arrows in 2-D).

2. Forces on a point particle that can move in space (i.e. arrows in 3-D).
Notice that arrows in 2-D and arrows in 3-D are different vector spaces.

3. m× n matrices for fixed m and n.

4. Sufficiently smooth functions on the interval 0 ≤ x ≤ L that go to zero at
x = 0 and x = L, as in quantum particle-in-a-box.

5. Periodic functions with a fixed period, e.g. Fourier Series.

Activity 14.1.1 Definition of addition for example vector spaces. For
each of the example vector spaces above, state what is meant by the sum of
two vectors.
Answer. For arrows, addition means the parallelogram rule. For matrices,
addition means component by component, which is equivalent to the parallel-
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ogram rule if the matrices happen to be columns. For functions, addition is
pointwise addition of functions.

14.2 Definition and Properties of an Inner Prod-
uct

We have already discussed the concept of a dot product Section 3.6 or inner
product Section 3.7 in the simplest examples of vector spaces when we can
think of the vectors as either arrows in space or as columns of real or complex
numbers. In this section, we generalize the concept of inner product to ANY
vector space.

Definition 14.2.1 Inner Product. An inner product 〈~u|~v〉 is a general-
ization of the dot product with the following properties:

〈~u|~v〉 = 〈~v|~u〉∗ (14.2.1)
〈~u|λ~v + µ~w〉 = λ 〈~u|~v〉+ µ 〈~u|~w〉 (14.2.2)

Like the dot product, the inner product is always a rule that takes two vectors
as inputs and the output is a scalar (often a complex number). ♦

While most vector spaces in physics have a natural and obvious inner
product, the existence of an inner product is NOT an essential feature of the
mathematical definition of a vector space. A vector space can have many
different inner products (or none).

In analogy with dot products, we call the square root of the inner product
of a vector with itself 〈v|v〉 the norm or the length of the vector. Similarly, if
the inner product of two vectors is zero 〈v|w〉 = 0 we say that the vectors are
orthogonal or perpendicular even when these statements have no obvious
geometric meaning.

14.3 Visualizing the Dot Product in Higher Di-
mensions

The figure below shows a representation of the dot product in five dimensions,
similar to the one given in Section 1.9. However, unlike that two-dimensional
representation, we can not display the five (vector) components as orthogonal
arrows. Instead, the sliders control the values of the (scalar) components, with
the five components of ~v shown on the left in brown, and the five components of
~w shown on the right in blue. As in Figure 1.9.1, the histogram boxes provide a
visual representation of the selected components, with corresponding products
shown in green.
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Figure 14.3.1 A representation of the dot product in five dimensions.
The same technique can be used to represent the dot product in any

(relatively small) number of dimensions. This representation is based on the
algebraic formula (1.8.5) for the dot product, and assumes that the vectors are
expressed in terms of an orthonormal basis.

14.4 Visualizing the Product of Two Functions
The applet below shows the graph of the product fg (in green) of two functions
f (in brown) and g (in blue). 1 This graph can be constructed by pointwise
multiplication: At each point in the domain, read off the values of the two
functions from their graphs, multiply these values together, and plot that value.

1The integral of the product is also shown; see Section 14.6.
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Figure 14.4.1 The product of two functions.

Activity 14.4.1 Multiplying Functions Together. Try it for yourself!
Choose any two functions and graph them on the same axes. Looking only at
these graphs, construct the graph of the product of the two functions. After
completing this geometric construction, multiply the two functions together
and graph the result. Did you draw the correct graph?
Hint. You can check your answer by entering the functions into the applet in
Figure 14.4.1.

14.5 Inner Products of Harmonic Functions
What happens if you multiply two different trig functions, for example sin(2θ) sin(3θ),
as shown in Figure 14.5.1. As you might expect, there are two wave structures
superposed. The overall structure (often called an envelope) of a large wave
controlled by the difference of the two wavelengths and with smaller “wiggles”
controlled by the sum of the two wavelengths.

Figure 14.5.1 The graph of y = sin(2θ) sin(3θ).
For Fourier series, what we will care about is the area under this graph.

What is the integral of this combined function? Hard to tell, but there’s about
as much area above the axis as below, so zero would be plausible guess, which
turns out to be correct. This central identity underlies all of Fourier theory.
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It is in fact not that difficult to evaluate such integrals in closed form. Using
technology or integral tables, we find the indefinite integral∫

cos(mθ) cos(nθ) dθ = m sin(mθ) cos(nθ)− n cos(mθ) sin(nθ)
m2 − n2 (14.5.1)

for m 6= n. There are similar formulas for the various combinations of sines
and cosines. You should notice that we will need to be careful when m 6= n.

For Fourier series, we care about the cases where m and n are both integers,
and we want the definite integral over an entire period; with these assumptions,
we find ∫ 2π

0
sin(mθ) sin(nθ) dθ = δmn, (14.5.2)∫ 2π

0
sin(mθ) cos(nθ) dθ = 0, (14.5.3)∫ 2π

0
cos(mθ) cos(nθ) dθ = δmn. (14.5.4)

where the Kronecker delta δmn is defined in Section 17.1.
To complete this list, we consider the case m = 0. (Since sin(0 θ) is the zero

function, we do not need to include that case.) We get one last formula:∫ 2π

0
cos2(0 θ) dθ = 2π. (14.5.5)

Activity 14.5.1 Integrals of products of harmonic functions. Use
Euler’s formula (2.6.1) to find the values of the definite integrals in this section
by hand, by explicitly integrating exponential functions.

14.6 Inner Products of Functions
The applet below shows the product (see Section 14.4) of two trigonometric
functions whose periods are related by a factor of 2. There is about as much
area above the graph of this product as below, so it is plausible that the integral
of this product should be 0, which turns out to be correct. This result holds for
the product of any two sine or cosine functions whose periods are related by a
rational number other than 1, so long as the integral is taken over (a multiple
of) a full period of both functions.

In the applet shown, with the integral being taken from 0 to 2π, this condition
is equivalent to requiring the coefficients of x to be distinct integers. (The
integers can be the same if one function involves sine and the other cosine.)

You can verify this remarkable fact by inserting any two distinct integers
into the functions in the applet, and/or changing one or both functions from
cosine to sine. What happens if you use the same integer twice?
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Figure 14.6.1 The product of two trigonometric functions.
You can check that these periodic functions satisfy the conditions to be

interpreted as “vectors” in an abstract vector space (see Section 14.1), and the
integral satisfies the conditions to be interpreted as a “dot” or inner product
(see Section 14.2). The sines and cosines above are orthogonal! We can therefore
use these functions as a natural basis for this vector space of periodic functions.
We will discuss this example vector space further in a chapter on Fourier series,
Chapter 20.

Definition 14.6.2 Inner Product for Fourier Series. More formally,
there is an inner product (see Section 14.2) on (suitably smooth, periodic)
functions given by
The “bra-ket” notation used here is often used in quantum mechanics and is
further discussed in Section 14.2. In the context of real functions, such as those
considered here, the complex conjugation doesn’t do anything, but is included
anyway to better match the notation used in more general contexts.

〈f |g〉 =
∫ 2π

0
f∗(x)g(x) dx (14.6.1)

under which the functions {1, cosnx, sinnx} are orthogonal. However, they
are not normalized, as you can verify using the applet above. ♦

Periodic functions with sines and cosines as the basis are not the only set of
functions that are vector spaces. There are many others, typically associated
with a particular differential equation with a particular boundary condition.
Each such vector space has a natural inner-product defined on it, similar
to (14.6.1) above. The study of these vector spaces as they arise in partial
differential equations is called Sturm-Liouville theory.
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14.7 Completeness
Given a vector and an orthonormal basis, it is easy to determine the components
of the vector in the given basis. For example, if

~F = Fx x̂+ Fy ŷ + Fz ẑ (14.7.1)

then dotting both sides of this equation with x̂ yields the x-component of the
vector, namely Fx.

x̂ · ~F = x̂ · (Fx x̂+ Fy ŷ + Fz ẑ)

= Fx��
�:1

x̂ · x̂+ Fy��
�*0

x̂ · ŷ + Fz��
�:0

x̂ · ẑ
= Fx (14.7.2)

where the orthonormality of the basis vectors has been used in the middle step.
Put differently,

~F = (~F · x̂) x̂+ (~F · ŷ) ŷ + (~F · ẑ) ẑ. (14.7.3)

All we need to make this idea work is an orthonormal basis. (If the basis
is not normalized, the method still works, but we will need to account for the
normalization of the basis vectors explicitly.)

In function spaces, for example for Fourier series in Section 14.6, the sum
in the dot product above becomes an integral. The orthogonal basis elements
are the trigonometric functions

{1, cosnx, sinnx} (14.7.4)

with n a positive integer. There are an infinite number of basis vectors! But
what vector space do they span?

Definition 14.7.1 Completeness. For a finite dimensional vector space,
it is usually obvious how many vectors are required to make a basis, i.e. the
minimum number of vectors you need to ensure that every vector can be built out
of a linear combiniation of the basis. For example, for arrows in 3-dimensional
space, we need three basis vectors. That’s what the number 3 in “3-dimensional”
means. The technical language for this concept is that this basis is complete.
For an infinite dimensional vector space, such as periodic functions, the proof
of what makes a basis complete is more difficult. Fortunately, mathematicians
have all ready done the proofs in the applied cases that we care about, so
it is only necessary to know the result. It turns out that the any periodic
function that is reasonably well behaved (for instance, piecewise smooth) can
be expanded uniquely in terms of the basis given in (14.7.4). This basis is
complete on the vector space of (piecewise smooth) periodic functions with
period 2π. ♦

14.8 Linear Operators: Definitions and Exam-
ples

Definition 14.8.1 Linear Operator. An operator L is linear if it satisfies
two conditions when acting on any appropriate vector v and for any constants
α:

L(αv) = αLv (14.8.1)
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L(v1 + v2) = Lv1 + Lv2 (14.8.2)

♦

Derivatives Are Linear Operators. You have often used the fact that the
derivative operator acting on functions is linear:

d

dx
(αf) = α

(
d

dx
f

)
(14.8.3)

d

dx
(f + g) =

(
d

dx
f

)
+
(
d

dx
g

)
(14.8.4)

For example,
d

dx

(
3x2 + cosx

)
= 3 d

dx
x2 + d

dx
cosx (14.8.5)

To prove linearity, you would need to look at the details of the limit definition
of the derivative. It’s not hard, try it!

By a straightforward extension, the differential operator L defined by

L ≡ an(x) d
n

dxn
+ an−1(x) d

n−1

dxn−1 + · · ·+ a0(x) (14.8.6)

is also linear. The important feature here is that all of the (nth order) derivatives
are to the first power and not inside of any other special functions. (Do not be
confused by the notation for nth order derivatives, which looks like the notation
for the nth power.) Many differential operators in physics ARE linear, so this
should look very comfortable and familiar. As counterexamples, the following
strange-looking differential operators are NOT linear:(

d

dx
f

)2
, (14.8.7)

sin
(
d

dx
f

)
. (14.8.8)

In particular, you may have seen the equation for the motion of a pendulum:

d2θ

dt2
+ g

L
sin θ = 0 (14.8.9)

The term sin θ makes this equation non-linear. When you make the small
angle approximation (the first term in a power series expansion) sin θ ≈ θ, the
equation becomes linear, and therefore simple to solve. (See Section 15.6 for
the method of solving this equation.) But the solution is only approximately
true and the approximation is best when the angle θ is small.

Other Examples of Linear Operators. You use the fact that matrix
multiplication (acting on vectors that are columns and multiplication by
scalars α) is a linear operator when you do the following common matrix
manipulations. (

2 3
4 5

)(
α

(
6
7

))
= α

((
2 3
4 5

)(
6
7

))
(14.8.10)(

2 3
4 5

)((
6
7

)
+
(

8
9

))
=
((

2 3
4 5

)(
6
7

))
+
((

2 3
4 5

)(
8
9

))
(14.8.11)

You also use the fact that Hermitian operators in quantum mechanics,
for example, the Hamiltonian, are linear when you do the following bra/ket
manipulations.
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The most common representations for the Hamiltonian are as linear differential
operators or as matrix operators, so this example is really just an abstraction
of the previous two examples.

H (α|ψ〉) = α (H|ψ〉) (14.8.12)
H (α|ψ1〉+ α|ψ2〉) = (H|ψ1〉) + (H|ψ2〉) (14.8.13)

14.9 Linear Operators (Advanced)
Origin of the Word “Linear” in Linear Operator. The word linear
comes from linear equations, i.e. equations for straight lines. The equation for
a line through the origin y = mx comes from the operator f(x) = mx acting
on vectors which are real numbers x and constants that are real numbers α.
The first property:

f(αx) = m(αx) = α(mx) = αf(x) (14.9.1)

is just commutativity of the real numbers. The second property:

f(x1 + x2) = m(x1 + x2) = m(x1) +m(x2) = f(x1) + f(x2) (14.9.2)

is just distributivity of multiplication over addition. These are properties of
real numbers that you’ve used since grade school, even if you didn’t know to
call the properties by these fancy names! Note that the equation for a line
NOT through the origin y = mx+ b, leading to the operator g(x) = mx+ b, is
NOT linear.

g(x1 +x2) = m(x1 +x2)+b 6= (mx1 +b)+(mx2 +b) = g(x1)+g(x2). (14.9.3)

Inhomogeneous Linear Differential Equations. It will be helpful to
remember the example of linear equations with zero and non-zero y-intercept
when you are learning the difference between homogeneous and inhomogeneous
linear differential equations in Section 15.1.

As with the example above for straight lines through the origin and not
through the origin, if you take a homogeneous linear differential operator L as
in example 1 above and add to it an inhomogeneous term b(x), the resulting
operator which takes y to Ly − b(x) is NOT linear. If yp and yq are both
solutions of

Ly = b(x), (14.9.4)

then
L (yp + yq) = 2b(x) 6= b(x). (14.9.5)

You can NOT add two solutions of an inhomogeneous differential equation
and get another solution. However, you CAN add ANY solution of the homo-
geneous equation to a solution of the inhomogeneous equation to get another
solution of the inhomogeneous equation.



Chapter 15

Ordinary Differential Equa-
tions

15.1 Definitions
In this section, we define several different types of differential equations and
discuss their properties.

Definition 15.1.1 Differential Equations. A differential equation is
an equation involving an unknown function and its derivatives. A differential
equation is an ordinary differential equation (ODE) if the unknown func-
tion depends on only one independent variable. If it depends on more than
one variable, the equation is a partial differential equation (PDE). The
order of a differential equation is the order (number of derivatives taken) of
the highest derivative appearing in the equation. The degree of a differential
equation that can be written as a polynomial in the unknown function and its
derivatives is the power to which the highest order derivative is raised. ♦

A simple example of a second-order ordinary differential equation is

d2y

dx2 = a (15.1.1)

where a is a constant. This simple example can be solved by integrating both
sides twice.

Definition 15.1.2 Linearity and Homogeneity. An nth order differential
equation is linear if it has the form

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a0(x)y(x) = b(x). (15.1.2)

A linear equation is homogeneous if b(x) = 0 and inhomogeneous if b(x) 6= 0.
♦

The example above is inhomogeneous unless a = 0, in which case it is
homogeneous.

Notation 15.1.1 Linear Differential Operators. To simplify differential
equations such as (15.1.2), it is common to pull out all the derivative opera-
tors with their coefficients into a single differential operator acting on the
unknown function y. Thus, the big messy operator gets replaced by the single
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caligraphic letter L, where

L ≡ an(x) d
n

dxn
+ an−1(x) d

n−1

dxn−1 + · · ·+ a0(x) (15.1.3)

so that (15.1.2) becomes
Ly(x) = b(x). (15.1.4)

By convention, the differential operator L is always written to the left of the
function that it acts on.

In the example above, L = d2

dx2 .

Definition 15.1.3 Solution (of a differential equation). A solution of
a differential equation in the unknown function y and the independent variable
x on the interval I is a function y(x) that satisfies the differential equation
identically for all x in I. A particular solution of a differential equation is
any one solution. The general solution is the set of all solutions, typically
expressed in terms of free parameters. ♦

The general solution of the example differential equation is y = a
2x

2 + bx+ c,
where b and c are free parameters, that is, constants that can take on any value.

Definition 15.1.4 Initial and Boundary Value Problems. An initial
value problem is a differential equation together with conditions (known
as initial conditions) on the unknown function and its derivatives all at the
same value of the independent variable. A boundary value problem is a
differential equation together with conditions (known as boundary conditions)
on the unknown function and its derivatives at more than one value of the
independent variable. ♦

The constants b and c could be determined by specifying either the initial
values y(0) and y′(0) or the boundary values y(x1) and y(x2).

15.2 First-Order ODEs: Forms and Theorems
First-order ODEs (Section 15.1) are among the simplest. For fairly general
smoothness conditions, a solution is not only guaranteed to exist, but is also
guaranteed to be unique. The technical theorem is stated below, but you may
want to regard this as a Don’t Worry about It theorem. It tells you that you
can just go ahead and try to solve it by one of the analytical methods listed in
the next couple of sections. If you find a solution, then it exists and is unique.
Usually, any limitations on WHERE it exists will be obvious from the physical
situation.
The theorem may become more important to you if you are trying to find a
numerical solution to the ODE. Numerical methods can inadvertently jump over
a place where the solution does not exist and lead you to believe, incorrectly,
that two solutions that are perfectly valid in adjacent regions are also valid
across the boundary between them. This theorem will help you identify the
boundary.

There are a number of different methods for solving these equations. Which
one you may want to use depends on the form of the equation. Listed here are
some common forms of first-order ODEs:
Definition 15.2.1 Forms of First-Order ODEs.

Standard Form: You can ALWAYS write a first-order ODE in standard
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form:
dy

dx
= f(x, y). (15.2.1)

In this form, you are isolating the derivative term on one side of the equation,
which may involve some really messy inverse functions on the other side of the
equation. Because it can be messy, this form is used primarily in the statement
of theorems about existence and uniqueness of solutions.

Separable Form: If you can write

f(x, y) = h(x)g(y), (15.2.2)

then Eqn(15.2.1) is called separable. It is NOT always possible to write the
equation in this form, but when you can, the solution is straightforward. See
Section 15.3 for a discussion of the solution method.

Differential Form: If you write the standard form equation as

f(x, y) = −M(x, y)
N(x, y) , (15.2.3)

then with some straightforward algebraic rearrangement, Eqn(15.2.1) becomes
the differential form

M(x, y) dx+N(x, y) dy = 0 (15.2.4)

There are many ways to divide f(x, y) into M(x, y) and N(x, y). Choose a way
that is helpful for the problem at hand. In particular, you can ALWAYS choose
M(x, y) and N(x, y) so that (15.2.4) is an exact differential and the equation
can be solved by simple integration. See Section 15.4 for a discussion of this
solution method. ♦

Theorem 15.2.2 First-Order ODEs: Uniqueness Theorem. If f and
∂f
∂y are continuous in a rectangle |x− x0| ≤ a, |y − y0| ≤ b, then there exists an
interval about x0 in which the initial value problem y′ = f(x, y), y(x0) = y0 has
a unique solution.

To Remember. Under physically reasonable circumstances, the solution
of a first-order ODE exists and is unique. If you can find a solution by any
convenient method, you can be confident that it is THE solution.

15.3 Separable ODEs
Separable ODEs are first order ODEs with the special form:

dy

dx
= h(x)g(y). (15.3.1)

where h(x) and g(y) are arbitrary functions, i.e. the x and y dependencies are
separated into the product of two functions. A solution will exist wherever
these functions are sufficiently smooth and y has no values for which g(y) is
zero.

Method. First, write (15.3.1) as a differentials equation by multiplying
through by dx. Then divide by g(y) so that all the y-dependence is on one side
of the equation and all the x-dependence is on the other side of the equation.
Finally, integrate both sides of the equation.

dy = h(x)g(y) dx, (15.3.2)
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1
g(y) dy = h(x) dx, (15.3.3)∫ 1
g(y) dy =

∫
h(x) dx. (15.3.4)

You may or may not be able to solve the resulting implicit equation for the
dependent variable, in this case y.

If you do the integral as an indefinite integral, don’t forget to add an arbitrary
constant. (Adding the constant to one side of the equation is sufficient.) If you
know an initial or boundary condition, the integrals become definite integrals
and you can use this information to specify the value of the unknown constant.

Activity 15.3.1 Solve the differential equation

dy

dx
= y (3x− 2) . (15.3.5)

Answer.
y = e

(
3x2

2 −2x+C
)

(15.3.6)

Solution. Following the method above, we have

dy = (3x− 2) dx, (15.3.7)
1
y
dy = (3x− 2) dx, (15.3.8)∫ 1

y
dy =

∫
(3x− 2) dx. (15.3.9)

ln y = 3x2

2 − 2x+ C. (15.3.10)

If we are given an initial condition such as y(0) = 7, then we can use this to
find the value C = ln 7. The final answer is

ln y = 3x2

2 − 2x+ ln 7, (15.3.11)

y = e

(
3x2

2 −2x+ln 7
)
, (15.3.12)

= 7e
(

3x2
2 −2x

)
. (15.3.13)

15.4 Exact ODEs
COMING SOON! For now, see Boas 6.8 and 8.4

Note: Any first order linear ODE can be solved on some interval. You
can always multiply the differential form of the differential equation by an
appropriate function of the independent and dependent variables (called an
integrating factor) so that the equation becomes exact. Then you can solve the
differentials equation using methods for exact equations. Boas 8.3 has a nice
description that not only shows you how to find the integrating factor, but also
shows you how to find the solution of the differential equation in terms of that
integrating factor.
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15.5 Theorems about Linear ODEs
In this section, we will give, without proof, several important theorems about
linear differential equations. But before we get to the theorems, you will need
to understand what is meant by the word linear, see Section 14.8. so that you
can understand the content of these theorems. Before you read this section, you
should also make sure you know the definitions and notation in Section 15.1.

The first two theorems tell us the general form for solutions for homogeneous
and inhomogeneous linear differential equations and describe the free parameters
that exist in each solution. The third theorem describes what kind of initial
conditions are necessary to remove this freedom and specify a unique solution.

Theorem 15.5.1 Linear Homogeneous ODEs: Form of General Solu-
tion. An nth order linear homogeneous differential equation L(y) = 0 always
has n linearly independent solutions, y1, . . . , yn. The general solution yh is

yh = C1y1 + C2y2 + · · ·+ Cnyn (15.5.1)

where C1, C2, . . . , Cn are arbitrary constants. Technically, the space of all
solutions forms an n-dimensional vector space, see Section 14.1.
Theorem 15.5.2 Linear Inhomogeneous ODEs: Form of General So-
lution. The general solution of the nth order linear inhomogeneous differential
equation L(y) = b(x) is

y = yh + yp (15.5.2)

where yh is the general solution of the homogeneous equation L(y) = 0 and
yp is any one particular solution of the inhomogeneous equation. Recall that
the general solution of the homogeneous equation (above) has n independent
parameters.
Theorem 15.5.3 Linear ODEs: What Initial Conditions Make the
Solution Unique. Consider the nth order, linear, ordinary differential equa-
tion:

1y(n) + an−1(x)y(n−1) + · · ·+ a0(x)y = b(x) (15.5.3)
Note the coefficient 1 in front of the y(n) term.

together with the initial conditions:

y(x0) = c0 (15.5.4)
y′(x0) = c1 (15.5.5)

...
y(n)(x0) = cn (15.5.6)

If b(x) and aj(x) are continuous ∀j on some interval I containing x0, then
the initial value problem has a unique solution throughout I.

15.6 Constant Coefficients, Homogeneous, Lin-
ear ODEs

Form of the equation. Consider an nth order linear ODE of the form

an
dny

dxn
+ an−1

dn−1y

dxn−1 + ...+ a0y = 0 (15.6.1)
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where the coefficients ai are constant. This very special case of the general nth
order linear ODE, for which all of the ai’s are constant, comes up in physics
incredibly often. Especially important is the case of small, (damped, for b 6= 0)
oscillations, such as for a pendulum, which are described by a second order
linear ODE (n = 2), using the independent variable t:

d2θ

dt2
+ 2b ω0

dθ

dt
+ ω2

0θ = 0 (15.6.2)

It will be important that you recognize this equation whenever it comes
up, regardless of the algebraic letters that are used. Look for second order,
linear, homogeneous, and CONSTANT coefficients. Reread this section 15.1of
the book if you need to review the meaning of any of these words.

Method. Definition 15.6.1 Ansatz. Often, when we are solving differential
equations, we make an ansatz, i.e. an initial guess for the basic form of
the solution with some unknown parameters or functions. We then plug the
guess into the differential equation to get a simpler equation for the unknown
parameters. ♦

The differential equation eqn. (15.6.1) can be solved by making the ansatz

y = ekx (15.6.3)

where k is an unknown constant. We will find the value of the unknown k by
substituting this expression back into the original equation. This ansatz is a
reasonable guess because the derivative of ekx is just a multiple of itself and
higher order derivatives

dmekx

dxm
= kmekx (15.6.4)

are also multiples of the original function. Each term of equation (15.6.1) after
substitution will have a factor of ekx, i.e. we obtain(

kn + an−1k
n−1 + ...a0

)
ekx = 0 (15.6.5)

Definition 15.6.2 Characteristic Polynomial Equation. After we factor
out ekx, the differential equation has been reduced to the characteristic
polynomial equation

ank
n + an−1k

n−1 + ...a0 = 0 (15.6.6)

for the unknown parameter k. ♦
The characteristic equation is a huge simplification! The ODE (15.6.1)

has become a polynomial equation (15.6.6), which is much easier to solve.
Notice that the order of the original ODE, namely n, is also the order of the
characteristic polynomial. Over the complex numbers, nth order polynomials
have exactly n roots which may be degenerate (i.e there may be repeated
roots, see Section A.2). If there is no degeneracy, then we obtain n linearly-
independent solutions of the nth-order differential equation by plugging in each
of the different values of k into the ansatz. If there is degeneracy, we need
to do something a little trickier to get n linearly independent solutions. See
Section 15.6.2.

There is a theorem, which we quote without proof, that says that the trick
below always works and we can obtain n solutions in both the non-degenerate
and degenerate cases.
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Theorem 15.6.3 Solutions of ODEs with Constant Coefficients. A
homogeneous nth-order ordinary differential equation with constant coefficients
admits exactly n linearly-independent solutions. Therefore, the general solution
will have n unknown parameters that can be specified with initial conditions or
boundary conditions.
Activity 15.6.1 Generic Example. Find the general solution of:

d2y

dx2 + dy

dx
− 6y = 0. (15.6.7)

Answer.
y = C1e

−3x + C2e
2x (15.6.8)

Solution. Substituting (15.6.3) into (15.6.7) leads to

0 = k2 + k − 6 = (k + 3)(k − 2) (15.6.9)

so that k = −3 or k = 2. You should check that both e−3x and e2x do indeed
satisfy (15.6.7); the general solution of this homogeneous ODE is given by

y = C1e
−3x + C2e

2x (15.6.10)

for arbitrary constants Ci.
Activity 15.6.2 Special Case: Repeated Roots. Find the general solution
of:

d2y

dx2 − 2dy
dx

+ y = 0? (15.6.11)

Answer.
y = C1e

x + C2xe
x (15.6.12)

Solution. In this case, the characteristic polynomial is

0 = k2 − 2k + 1 = (k − 1)2 (15.6.13)

and indeed ex does satisfy (15.6.11). But wait a minute—that’s only one
solution! This is a second order equation, so the theorem above guarantees a
second solution. How do we find it?

There’s a trick in the case of repeated roots (degeneracy), which we will
state without proof. The extra solutions are of the form xmeαx. In this case,
the second solution is x eαx; in general, the other linearly independent solutions
include terms with m = 0, 1, ..., r − 1 for a root of multiplicity r.

For example (15.6.11), the general solution is:

y = C1e
x + C2xe

x (15.6.14)

Activity 15.6.3 Special Case: Complex Roots. Find the general solution
of:

d2y

dx2 + 4y = 0 (15.6.15)

Answer. We can write the general solution of (15.6.15) in two ways:

y = C1e
2ix + C2e

−2ix (15.6.16)
= D1 cos 2x+D2 sin 2x (15.6.17)

Solution. Even if the coefficients of the ODE are real, some of the roots of
the characteristic polynomial could be complex. In this case, the independent
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solutions are y = e±2ix. Since such complex solutions always come in pairs
if the coefficients are real (Why?), we can use Euler’s formula to replace the
complex exponentials by trig functions, which in this case are

cos(2x) = 1
2(e2ix + e−2ix), (15.6.18)

sin(2x) = 1
2i (e

2ix − e−2ix). (15.6.19)

We can write the general solution of (15.6.15) in two ways:

y = C1e
2ix + C2e

−2ix

= C1 (cos 2x+ i sin 2x) + C2 (cos 2x− i sin 2x)
= D1 cos 2x+D2 sin 2x (15.6.20)

There is, of course, a simple relationship between the pairs of coefficients
C1, C2 and D1, D2, but since these coefficients are unknown until we specify
the boundary conditions or initial conditions, we rarely need to solve for this
relationship. Once you understand the relationship between these two solutions,
you can of course always just write down the second solution instead of the
first, without going through the algebraic steps in (15.6.20).

In the language of vector spaces (see Chapter 14), the algebraic steps in
(15.6.20) are just a change of basis in the two-dimensional vector space of
solutions.

15.7 Linear Independence
Motivation and Analogy. We know from the theorem quoted in Theo-
rem 15.5.2 on nth order linear homogeneous differential equations Ly = 0 that
the general solution is a linear combination of n linearly independent solutions

y = C1y1 + C2y2 + · · ·+ Cnyn (15.7.1)

What does the word linearly independent mean and how do we find out if a
set of particular solutions is linearly independent?

Let’s examine a close geometric analogy. Consider the set of three vectors
in the plane

{~v1 = x̂, ~v2 = ŷ, ~v3 = 3x̂− 2ŷ}. (15.7.2)
Notice that the third vector is a linear combination of the first two:

~v3 = 3~v1 − 2~v2 (15.7.3)

or
3~v1 − 2~v2 − ~v3 = 0. (15.7.4)

We say that these three vectors are linearly dependent (alternatively, NOT
linearly independent). Geometrically, this is equivalent to the statement that
these three vectors lie in a two-dimensional plane.

Why is linear independence important? If we wanted to expand another
vector ~v4, it is sufficient to expand it in terms of the linearly independent
vectors ~v1 and ~v2:

~v4 = D1~v1 +D2~v2 (15.7.5)
and the coefficients D1 and D2 are unique. We say that ~v1 and ~v2 form a basis
for the two-dimensional vector space. We do not need to include the vector ~v3
in the expansion,

~v4 = D1~v1 +D2~v2 +D3~v3 (15.7.6)
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but if we did include it the coefficients D1, D2, and D3 would not be uniquely
specified. Many combinations of Ds would work.

We will now extend this definition of linear independence of vectors that
are arrows in space to linear independence of functions that are solutions of a
linear ODE. There is deep mathematics underlying the analogy. The solutions
of a linear ODE form a vector space (see Section 14.1).

Definition 15.7.1 Linear Independence of Functions. A set of n func-
tions y1, . . . , yn on an interval I are linearly dependent if there exist constants
C1, C2, . . . , Cn, not all zero, such that

C1y1 + C2y2 + · · ·+ Cnyn = 0 (15.7.7)

Otherwise the functions are linearly independent. ♦

Testing for Linear Independence: Wronskians. It is cumbersome to
use the definition above to find out if a set of functions is linearly independent.
If the set of functions are all solutions of the same linear ODE, then there
is a much quicker method, using a mathematical object called a Wronskian.
Definition: If a set of n functions y1, . . . , yn on an interval I each have n− 1
derivatives, then the determinant W (y1, . . . , yn), defined below, is called the
Wronskian of the set of functions.

W (y1, . . . , yn) .=

∣∣∣∣∣∣∣∣∣
y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
...

...
y

(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣ (15.7.8)

Theorem: If y1, . . . , yn are solutions of L(y) = 0 on I, then they are linearly
independent ⇐⇒ W (y1, . . . , yn) is not identically zero on I.

Note: This theorem is only valid if the functions y1, . . . , yn are all solutions
of the same nth order linear ODE.

A Note on Orthonormality. Just as with vectors that are arrows in space,
it is often convenient, but not necessary to choose the linearly independent basis
functions to be orthonormal, i.e. orthogonal and normalized. In the motivation
section above, I chose to focus on ~v1 = x̂ and ~v2 = ŷ as the basis because that
is the conventional orthonormal basis, but everything I said would have worked
perfectly well if I had chosen ~v1 = x̂ and ~v3 = 3x̂− 2ŷ as the basis instead. It
just would have been a little harder for you to follow the algebra. In the same
way, it will often simplify algebra for us if we choose the linearly independent
basis functions to be orthonormal, but we’ll need to generalize the ideal of the
dot product to these functions. See section 14.5.

15.8 Constant Coefficients, Inhomogeneous
Form of the equation. An nth order linear differential equation with con-
stant coefficients is inhomogeneous if it has a nonzero “source” or “forcing
function,” i.e. if it has a term that does NOT involve the unknown function.
We will call this source b(x). The form of these equations is:

an
dny

dxn
+ an−1

dn−1y

dxn−1 + ...+ a0y = b(x)

Ly = b(x) (15.8.1)
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In the second form for these equations, we have rewritten all the messy
derivative information as a linear differential operator L so that it is easier to
see the important steps of the algebra below.

Strategy. The following theorem explains how you will know when you have
the most general solution of these equations. The proof is simple and illustrative,
it’s worth reading.

Theorem 15.8.1 An inhomogeneous nth-order ordinary differential equation
with constant coefficients admits exactly n linearly-independent solutions. The
general solution of the inhomogeneous equation is the sum of the general solution
of the homogeneous equation yh PLUS any one solution to the inhomogeneous
equation, called a particular solution yp.
Proof. The general solution of the homogeneous equation satisfies Lyh = 0 and
the particular solution satisfies Lyp = b(x). Since the differential operator L is
linear (see Section 14.8), it is straightforward to see that:

L(yh + yp) = Lyh + Lyp
= 0 + b(x)
= b(x) (15.8.2)

�
This theorem is telling us first to solve the homogeneous equation, which

we know has n linearly independent solutions. The general solution will have n
undetermined coefficients. Then we find one particular solution and add this
and we’re done.

Method/Simple Examples. So how do we find a particular solution to an
inhomogenous ODE with constant coefficients? The general case is difficult
and beyond the scope of this book. But it is easy to find particular solutions
for the special cases that come up most often in physics. We will illustrate the
method with examples.

Consider the ODE
d2y

dx2 + dy

dx
− 6y = e5x. (15.8.3)

Since derivatives of exponential functions are proportional to themselves,
we choose an ansatz of the form

yp = Ce5x. (15.8.4)

Notice that in this ansatz we are solving for the constant coefficient C, not the
exponent as in section 15.6. The exponent is determined by the form of the
inhomogeneous term.

Substituting (15.8.4) into (15.8.3), we obtain

(25C + 5C − 6C) e5x = e5x (15.8.5)

which we can solve for C, yielding C = 1/24. Putting our particular solu-
tion (15.8.4) together with the general homogenous solution derived in Sec-
tion 15.6, the general solution of (15.8.3) is

y = C1e
−3x + C2e

2x + 1
24e

5x (15.8.6)

Source terms that are trigonometric functions are similar, again recalling
Euler’s formula. Consider the ODE

d2y

dx2 + 4y = sin(3x). (15.8.7)
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The trick here is to recognize that sin(3x) involves both of e±3ix, so we
had better incorporate both into our ansatz. However, we can do so by using
trigonometric functions, rather than exponentials. Thus, we try a particular
solution of the form

yp = A sin(3x) +B cos(3x) (15.8.8)

which results in

−9A sin(3x)− 9B cos(3x) + 4A sin(3x) + 4B cos(3x) (15.8.9)
= sin(3x). (15.8.10)

Collecting terms, and setting the coefficients of the linearly independent
functions sin(3x) and cos(3x) separately to zero results in

−9A+ 4A = 1 (15.8.11)
−9B + 4B = 0 (15.8.12)

so that A = −1/5, B = 0 and our general solution is

y = C1 cos(2x) + C2 sin(2x)− 1
5 sin(3x). (15.8.13)

Typically, the particular solution will involve both sines and cosines. (Why
doesn’t that happen here?)

More General Cases. The method above will work for any single inhomoge-
neous term of the form xmeαx cosβx or xmeαx sin βx, wherem is a non-negative
integer and α and β are real numbers, including possibly zero, with one caveat:
since, in the differential equation, you will be taking derivatives of the proposed
solution in the ansatz, the proposed solution should also contain terms of the
same form as the derivatives, each with its own unknown constant. For example,
if the inhomogeneous term is x2 cos 3x, the proposed solution should be

Ax2 cos 3x+Bx cos 3x+ C cos 3x
+Dx2 sin 3x+ Ex sin 3x+ F sin 3x (15.8.14)

and you will need to solve for all of the constants {A,B,C,D,E, F}. (Keep
differentiating until you don’t get any terms with a new form.)

It is also possible to solve equations with more complicated inhomogeneous
terms as long as the inhomogeneous term can be written as a linear combination
of terms of the types above b(x) = b1(x) + b2(x) + . . .. We just solve an
inhomogeneous equation for each of the terms bi separately and add the solutions
yp = yp1 + yp2 + . . .. Notice how the linearity of the differential operator L
guarantees that this method works in the following simple proof: Suppose
Lypi = bi for several values of the index i. Then:

L = L(yp1 + yp2 + . . . )
= Lyp1 + Lyp2 + . . .

= b1(x) + b2(x) = . . .

= b(x) (15.8.15)

Relationship to Fourier Series and Power Series. If the inhomogeneous
term is a periodic function, then we can expand it in a Fourier series (see
Chapter 20). Once you learn to do Fourier Series, the method you have just
learned becomes much more general, it applies to any periodic “source” or
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“forcing function”. Similarly, if the inhomogeneous term can be expanded in a
power series (see Chapter 13), then this method will also work. So, we see that
the method is actually quite general. Of course, if you only use a few terms of
the Fourier or power series, then you will only get an approximate solution of
the differential equation.



Chapter 16

Power Series Solutions of ODEs

16.1 Power Series Solutions: Method/Example
The power series method is one of the most powerful analytic methods that
physicists have for solving linear differential equations. The idea is very simple,
make an ansatz that a power series solution exists, but the coefficients in the
power series are unknown. Plug this ansatz into the differential equation and
use an iterative strategy to solve for the unknown coefficients. The method is
easiest to see using a simple example:

Activity 16.1.1 A simple example of power series solutions of linear
ODEs. Find a power series solution of

y′ = Ay (16.1.1)

for A a constant, expanded around the point z = 1.
Solution. Ansatz: Assume the solution IS a power series of the form:

y =
∞∑
n=0

cn (z − 1)n (16.1.2)

Make sure that the powers that appear in the sum are powers of z − z0, where
z0 is the point you are expanding around. Also, make sure that you use the
correct name of the independent variable (in this case, the y′ notation makes
the independent variable unclear, so I have arbitrarily chosen z). And choose
the correct name for the dependent variable (in this case, y).

Differentiating this expression, we obtain:

y′ =
∞∑
n=0

cn n (z − 1)n−1 (16.1.3)

Now, rewrite Equation (16.1.1) so that all the terms are on the same side of
the equation, then insert Equation (16.1.2) and Equation (16.1.3) to obtain:

0 =
∞∑
n=0

cn n (z − 1)n−1 −A
∞∑
n=0

cn (z − 1)n (16.1.4)

Now the strategy is to manipulate the indices n in the sums (in this case,
just the first sum) so that each sum contains the same power of z − z0 so
that the sums can be combined into a single sum. Notice that each sum has

171
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an index that is summed over so that the index does not appear in the final
expression once the sum has been completed. This index is analogous to the
variable of integration in a definite integral. Such an index is called a "dummy
index" and you are free to rename it any way you want. On the first sum in
Equation (16.1.4), rename m = n − 1 → n = m + 1. Don’t forget to change
every n to an equivalent expression with ms, including the lower index in the
sum.

0 =
∞∑

m=−1
cm+1 (m+ 1) (z − 1)m −A

∞∑
n=0

cn (z − 1)n (16.1.5)

Finally, relabel the dummy variable on the first sum, again: let n = m, so
that the sums can be combined. Be careful, the limits of the sums are not the
same, so you must separate out any extra terms that are in one sum and not
the other.

0 =
∞∑

n=−1
cn+1 (n+ 1) (z − 1)n −A

∞∑
n=0

cn (z − 1)n (16.1.6)

=
n=−1∑
n=−1

cn+1 (n+ 1) (z − 1)n (16.1.7)

+
∞∑
n=0

[cn+1 (n+ 1)−Acn] (z − 1)n (16.1.8)

The first term is identically zero when you plug in n = −1.
A crucial observation is that Equation (16.1.8) must be true for all values of

z. This fact can only be true if the coefficients of each power of z − 1 vanishes
separately, i.e. if

0 = [cn+1 (n+ 1)−Acn] (16.1.9)
for every value of n. This relationship is called a recurrence relation. You can
use it to find values of the coefficients for high values of n if you know the
coefficients for lower values of n. Solve for cn+1:

cn+1 = A

n+ 1 cn (16.1.10)

By keeping c0 as an unknown constant, we can find other coefficients cn by an
iterative process.

c1 = A

1 c0 (16.1.11)

c2 = A

2 c1 = A2

(2)(1) c0 (16.1.12)

c3 = A

3 c2 = A3

(3)(2)(1) c0 (16.1.13)

c4 = A

4 c3 = A4

(4)(2)(1) c0 (16.1.14)

... (16.1.15)

cn = A

n
cn = An

n! c0 (16.1.16)

In this case, we are able to see what the formula will be for the generic value of
cn. In most cases, this we will not be able to determine the general formula
and will be forced to trucate the series when we have as many terms of the
series as we need for the accuracy that we care about.
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Our final answer is:

f(x) = c0(1 + A

1! (z − 1) + A2

2! (z − 1)2 + · · ·+ An

n! (z − 1)n + . . . )

= c0

∞∑
n=0

An

n! (z − 1)n

= c0e
A(z−1)

Since we are solving a first order differential equation, we expect a single solution
multiplied by an overall arbitrary constant. Notice that the coefficient of the
first term in the series c0, through the recurrence relation, becomes a factor in
every term and therefore becomes the overall arbitrary constant.

For an nth order equation, we expect to get n linearly independent solutions
using this method. In exceptional cases, the extra solutions will be a power
series multiplied by a logarithm. The technical theorems that delineate when
you can expect solutions can be found in Section 16.3.

16.2 Series Solutions of Legendre’s Equation
Definition 16.2.1 Legendre’s Equation. Legendre’s equation is(

(1− z2) ∂
2

∂z2 − 2z ∂
∂z
−A

)
P (z) = 0 (16.2.1)

It arises during the separation of variables procedure for any PDE involving
the Laplacian in spherical coordinates, see Section 18.5. ♦

In this section, we will use series methods to find the general solution of
(16.2.1). Assume that the solution can be written as a power series

P (z) =
∞∑
n=0

an z
n (16.2.2)

Then we have

dP

dz
=
∞∑
n=0

an n z
n−1 (16.2.3)

d2P

dz2 =
∞∑
n=0

an n(n− 1) zn−2 (16.2.4)

Our job is to solve for the unknown coefficients an.
Plug (16.2.2)–(16.2.4) into (16.2.1) to obtain

0 =
∞∑
n=0

an n(n− 1) zn−2 − z2
∞∑
n=0

an n(n− 1) zn−2

− 2z
∞∑
n=0

an n z
n−1 −A

∞∑
n=0

an z
n (16.2.5)

The next step is to get the power of the independent variable z to be the
same in each term of (16.2.5). In the last three terms, the power is zn. (Don’t
forget the powers of z in front of the sum sign.) But in the first term, the
power is zn−2. Since the summation variable n is a dummy variable (just like
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a dummy variable of integration), we can shift n→ n+ 2 in the first term only,
i.e.

First Term =
∞∑
n=0

an n(n− 1) zn−2 (16.2.6)

=
∞∑

n=−2
an+2 (n+ 2)(n+ 1) zn

= a0���
��:0

(−2 + 2)(−2 + 1) z−2

+ a1(−1 + 2)���
��:0

(−1 + 1) z−1

+
∞∑
n=0

an+2 (n+ 2)(n+ 1) zn

=
∞∑
n=0

an+2 (n+ 2)(n+ 1) zn (16.2.7)

Pay special attention to what happened to the lower limit of the sum. After the
index is shifted, sum would start at n = −2, but the factor of (n+ 2) in the
first term and the factor of (n+ 1) in the second term mean that these terms
are zero and we can eliminate them from the sum. This cancellation doesn’t
always happen, you should check. If it doesn’t happen, you just need to carry
the extra terms through to the end of the calculation.

Plug (16.2.7) into (16.2.5). At the same time, bring any overall factors of z
into the corresponding sums. Finally, since each sum now has a factor of zn
and runs over the same range, group the sums together.

∞∑
n=0

an+2 (n+ 2)(n+ 1) zn −
∞∑
n=0

an n(n− 1) zn

− 2
∞∑
n=0

an n z
n −A

∞∑
n=0

an z
n (16.2.8)

=
∞∑
n=0

[an+2 (n+ 2)(n+ 1)− an (n(n− 1) + 2n+A)] zn (16.2.9)

Now comes the MAGIC part. Since (16.2.9) is true for all values of z, the
coefficient of zn for each term in the sum (i.e. the quantity in square brackets)
must separately be zero, i.e.

0 = an+2 (n+ 2)(n+ 1)− an (n(n− 1) + 2n+A). (16.2.10)

Definition 16.2.2 Recurrence Relation. We can solve for an+2 in terms
of an to obtain the recurrence relation which relates coefficients in the power
series to coefficients with smaller values of an

an+2 = n(n+ 1) +A

(n+ 2)(n+ 1) an. (16.2.11)

♦
By plugging successive even values of n into the recurrence relation (16.2.11),

usining an iterative process, allows us to find a2, a4, etc. in terms of the
arbitrary constant a0 and successive odd values of n allow us to find a3,
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a5, etc. in terms of the arbitrary constant a1. Thus, for the second-order
differential equation (16.2.1), we obtain two solutions as expected. a0 becomes
the normalization constant for a solution with only even powers of z and a1
becomes the normalization constant for a solution with only odd powers of z.
For example:

a2 = A

2 a0 (16.2.12)

a4 = 6 +A

12 a2 =
(

6 +A

12

)(
A

2

)
a0 (16.2.13)

...

a3 = 2 +A

6 a1 (16.2.14)

a5 = 12 +A

20 a3 =
(

12 +A

20

)(
2 +A

6

)
a1 (16.2.15)

...

Don’t forget to plug these coefficients back into the original power series anzatz
(16.2.2). It is rare to be able to find a closed form expression for general n, so
you may only be finding an approximation to a solution, but you can keep as
many terms as you have patience to calculate.

P (z) = a0

[
A

2 z
0 +

(
6 +A

12

)(
A

2

)
z2 + ...

]
+ a1

[
2 +A

6 z1 +
(

12 +A

20

)(
2 +A

6

)
z3 + ...

]
(16.2.16)

In general, the solutions of an ordinary linear differential equation can blow-
up only where the coefficients of the equation itself are singular, in this case at
z = ±1 (which correspond to the north and south poles θ = 0, π of spherical
coordinates). But there is nothing special about physics at these points, only
the choice of coordinates is special there. Therefore, in physics contexts, we may
want to choose solutions of (16.2.1) which are regular (non-infinite) at z = ±1.
This is an important example of a problem where the choice of coordinates
for a partial differential equation end up imposing boundary conditions on the
ordinary differential equation which comes from it. Therefore, the infinite series
(16.2.2) will typically blow up at the endpoints z = ±1, but a polynomial can
not. So if we choose the special values for the separation constant A to be
A = −`(` + 1) where ` is a non-negative integer, we see from (16.2.11) that
for n ≥ ` the coefficients become zero and one of the series terminates in a
polynomial.

Definition 16.2.3 Legendre Polynomials. The solutions of Legendre’s
equation for A− `(`+ 1) are polynomials of degree `, denoted P`, and called
Legendre polynomials. ♦

16.3 Power Series Solutions: Definitions and The-
orems

In this section, we will briefly discuss the theorems that state when a second
order linear ODE has power series solutions.
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First, write the ode in the special form

y′′ + p(z)y′ + q(z)y = 0. (16.3.1)

Note the coefficient one in front of the second derivative. Now exampine the
functions p(z) and q(z), thought of as functions of the complex variable z.

Definition 16.3.1 Regular Point of an ODE. If p(z) and q(z) are analytic
at a point z = z0, the z0 is said to be a regular point of the differential
equation. (The word analytic is a technical term for a complex-valued function
which is (complex) differentiable at the point. You can learn more about this
concept online. But for practical purposes, it means that the function does not
blow up at the point z0, nor is it otherwise badly behaved, e.g. the origin of a
square root.) ♦

Theorem 16.3.2 If the coefficients p(z) and q(z) are analytic at a point z0,
then a power series solution of the differential equation (16.3.1), expanded
around the point z0 exists, and furthermore, the radius of convergence for the
series extends at least as far as the nearest singularity (point of non-analyticity)
of p(z) or q(z) in the complex plane. Usually, there will be two such power
series solutions, but sometimes the second solution will be a power series times
a logarithm.

Definition 16.3.3 Regular Singularity of an ODE. If (z − z0)p(z) and
(z−z0)2q(z) are analytic, then the point z0 is called a regular singular point
or regular singularity. ♦

Theorem 16.3.4 Theorem: If z0 is a regular singular point then equation
(16.3.1) can be solved by an extension of power series methods called a Frobenius
Series. The solution will consist of: (1) two Frobenius series, or (2) one
Frobenius series y1(z − z0) and a second solution y2(z − z0) = y1(z − z0) ln(z −
z0) + y0(z − z0), where y0(z − z0) is a second Frobenius series.

We will not discuss this method further here, but you can look it up online
or in a more comprehensive mathematical methods text, if necessary.



Chapter 17

Step and Delta Functions

17.1 Kronecker Delta
Definition 17.1.1 The Kronecker Delta. The Kronecker Delta is a
simple switch that compares two values i and j in some discrete set. The switch
turns on when i is the same as j and off when they are different, i.e.,

δij =
{

0 i 6= j

1 i = j
(17.1.1)

♦

Example 1: Kronecker Delta in a Sum. The most common place that
the Kronecker delta appears is inside a sum. In this case, it can be used to
collapse the sum to a single term. For example:

∞∑
i=1

ai δi3 = a1�
�>

0
δ13 + a2�

�>
0

δ23 + a3�
�>

1
δ33 + . . . (17.1.2)

= a3 (17.1.3)

In this example the factor of δi3 is zero in every term except the one when
i = 3, so all of those terms are zero and do not contribute to the sum. When
i = 3, the factor of δi3 is just one, so that is the only term that contributes.

Example 2: Trace of a Matrix with Kronecker Deltas. If you want to
add up all of the elements aij of a matrix A (where, by convention, the first
index i labels the rows and the second index j labels the columns), this requires
a double sum, one for each index.

3∑
i=1

3∑
i=j

aij (17.1.4)

If, instead, you want to find the trace of the matrix trA, then you only want to
add up the diagonal elements. A Kronecker delta in the double sum will ensure
that you only take the elements for which the row and column labels are the
same.

trA .=
3∑
i=1

3∑
i=j

aijδij (17.1.5)

177
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=
3∑
i=1

aii (17.1.6)

Question 17.1.2 Try it yourself: The Identity Matrix. Write the
elements of the 3× 3 identity matrix in terms of the Kronecker delta.

I
.=

δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

 (17.1.7)

17.2 Step and Delta Function Motivation
Consider a mass sliding along a frictionless surface. It collides, elastically, with
a wall. The velocity of the mass as a function of time is shown in Figure 17.2.1
and its acceleration is shown in Figure 17.2.2.

Figure 17.2.1 The velocity of an idealized mass colliding with a wall.

Figure 17.2.2 The acceleration of an idealized mass colliding with a wall.
Clearly, this is a highly idealized situation. In the real world, the mass will

slow down slightly due to a small amount of friction, the interaction with the
wall will not be instantaneous, nor will it be completely elastic, and the rebound
will be somewhat slower than the speed when the mass hits the wall, etc. But
suppose these differences from ideal are very small compared to the motion itself
and that we do not care about the details, only the overall qualitative behavior.
Then, we can model the behavior with two new functions, the step function
(defined in Section 17.3) and the delta function (defined in Section 17.4). These
functions are really easy to work with in algebra and calculus settings. With a
little bit of effort now, you will come to welcome them in your work.

The tricky part, of course, is what happens at the moment (labelled t0 in the
figures) that the mass hits the wall. All of the complications of the motion are
compressed into that one time. The velocity changes instantaneously from its
initial value v0 x̂ to −v0 x̂. This behavior will be modeled by the step function.

Even worse, is the acceleration. The acceleration is the derivative of the
velocity with respect to time, so the acceleration is zero before the mass hits the
wall and after the mass hits the wall. But what is the value of the acceleration
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at the moment the mass hits the wall? Clearly, the acceleration is infinite. The
delta function is what allows us to specify exactly how big this infinity is, so
that the velocity by the correct amount.

17.3 Step Functions
Definition 17.3.1 The Step or Heaviside Function. The step function
Θ(x), also called the Heaviside function or theta function, is defined to be
0 if x < 0 and 1 if x > 0. See Figure 17.3.2. A function that behaves differently
in two or more different regions is called piecewise and often written

Θ(x) =


0 x < 0
1
2 x = 0
1 x > 0

(17.3.1)

Figure 17.3.2 The step function Θ(x).
♦

In most physical problems, it is unnecessary to know the exact value of
Θ(x) at the discontinuity. If it ever matters, it is usually easiest to define it
symmetrically, i.e.

Θ(0) = 1
2 . (17.3.2)

Step functions are used to model idealized physical situations where some
quantity changes rapidly from one value to another in such a way that the exact
details of the change are irrelevant for the solution of the problem, e.g. edges of
materials or a process that switches on abruptly at a particular time, etc.

By shifting the argument of the function, it is possible to put the disconti-
nuity of the theta function wherever we need it. In Figure 17.3.3 you can see
that the graph of Θ(x− 2) has discontinuity at x = 2, instead of at x = 0.

Figure 17.3.3 The function Θ(x− 2).
Most often the step function appears in contexts where it is multiplying

some other function f(x). In this case, the step function can be thought of as
a switch, that ‘‘turns on’’ the function f(x). You can watch the operation of
the switch in Figure 17.3.4 below.
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Figure 17.3.4 An applet that allows you to change the value of δ in f(x) Θ(x−
δ). The default function displayed is f(x) = cos(x).

The step function can also be used to turn a function off, since

Θ(−x) = 1−Θ(x) (17.3.3)

is a step down, rather than up.

Sensemaking 17.3.1 Try It Yourself: Graphing Step Functions. Make
sure that you are able to graph all of the following functions:

f(x) = 2Θ(x),
f(x) = Θ(x− 2),
f(x) = Θ(2x− 3),
f(x) = Θ(2− x),
f(x) = Θ(x) Θ(x− 2),
f(x) = Θ(x)−Θ(x− 2),

f(x) = sin xΘ(x− π

2 ).

17.4 The Dirac Delta Function
Definition 17.4.1 The Dirac Delta Function.
Technically, the delta function is not really a function. It is a mathematical
entity called a “distribution” which is well defined only when it appears under
an integral sign, as in (17.4.2).

The Dirac delta function δ(x) has has the following defining properties:

δ(x) =
{

0 x 6= 0
∞ x = 0

(17.4.1)

∫ c

b

δ(x) dx = 1 b < 0 < c (17.4.2)

x δ(x) ≡ 0. (17.4.3)

♦

Using the Dirac Delta Function in an Integral. The properties of the
delta function allow us to compute∫ ∞

−∞
f(x) δ(x) dx =

∫ ∞
−∞

f(0) δ(x) dx
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= f(0)
∫ ∞
−∞

δ(x) dx

= f(0)

In the first equality, it is safe to replace the function f(x) with its value f(0)
at x = 0 since everywhere else the integrand is zero, due to the delta function.

We can shift the “spike” in the delta function as usual, obtaining δ(x− a).
This shifted delta function satisfies∫ ∞

−∞
f(x) δ(x− a) dx = f(a) (17.4.4)

To Remember. The Dirac delta function can be used inside an integral to
pick out the value of a function at any desired point.

17.5 Relationship between Delta and Step Func-
tions

The Dirac Delta and Step Functions are a Derivative/Integral Pair.
We can relate the delta function to the step function in the following way.
Consider the integral ∫ x

−∞
δ(u− a) du (17.5.1)

Notice the variable x in the upper limit of the integral. The value of this
integral is 0 if we stop integrating before we reach the peak of the delta function,
i.e. for x < a. If we integrate through the peak, the value of the integral is 1,
i.e. for x > a. Thus, we have argued that the value of the integral, thought of
as a function of x, is just the step function

Θ(x− a) =
∫ x

−∞
δ(u− a) du (17.5.2)

(Recall that we don’t really care about the choice of Θ(0), so we don’t
need to worry about the value of this function if we stop integrating exactly at
x = a.)

If the step function is the integral of the delta function, then the delta
function must be the derivative of the step function.

d

dx
Θ(x− a) = δ(x− a) (17.5.3)

You should be able to persuade yourself that this statement is reasonable
geometrically if you think of the derivative of a function as representing its
slope.

Sensemaking 17.5.1 The derivative of the step function. Prove that the
derivative of the step function is the delta function, i.e. prove Equation (17.5.3).
Solution. We need to show that

c∫
b

f(x) δ(x− a) dx = f(a) (17.5.4)

for b < a < c, where
δ(x− a) = d

dx
Θ(x− a) (17.5.5)
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The main strategy is to use integration by parts, paying strict attention to
the limits of integration.

c∫
b

f(x) δ(x− a) dx =
c∫
b

f(x) d

dx
Θ(x− a) dx

= f(x) Θ(x− a)|cb −
c∫
b

d

dx
(f(x)) Θ(x− a) dx

= {f(c)− 0} −
c∫
a

d

dx
(f(x)) dx

= f(c)− {f(x)|ca}
= f(c)− {f(c)− f(a)}
= f(a)

17.6 Compare Kronecker and Dirac Deltas
Comparing the Kronecker and Dirac Deltas. In Section 17.1, we defined
the Kronecker delta as

δij =
{

0 i 6= j

1 i = j

In Section 17.4, we defined the Dirac delta as

δ(x− a) =
{

0 x 6= 0
∞ x = a

These definitions look very much the same. What is the difference?
One difference comes from the input variables (the domain). For the

Kronecker delta, the input variables i and j are discrete variables; for the Dirac
delta, the input variable x is a continuous variable. You should always choose
to use the form of the delta that is appropriate for the input variables.

Definition 17.6.1 Discrete vs. Continuous Variables. A variable is
called a continuous variable if for any two values you can always find another
in between them (think about the real numbers). The values of these variables
are typically obtained by measuring; common examples are distance and time.
If the values of the variable are spaced apart (think about the integers), so that
there is always a gap between one value and its nearest neighbor(s), the variable
is called a discrete variable. These values of these variables are typically
obtained by counting; simple examples include the sets {0, 1, 2, 3} and the even
integers. These variables can be either finite or countably infinite. Examples
can also include more abstract sets such as {x, y, z} since the elements could
be assigned discrete numbers according to their position in the list. ♦

Another difference between the Kronecker delta and the Dirac delta comes
from the output variables (the range). The Kronecker delta compares the
discrete input variables i and j. It takes the value one whenever these two
input variables are the same. The Dirac delta compares the continuous input
variable x to the constant parameter a. It takes the value ∞ whenever x is the
same a a. This choice between one and ∞ comes from the ways in which the
deltas are used. The Kronecker delta is used to pick out a particular term in a
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sum (see Section 17.1). For example, if we want to pick out the term aN in a
sum, we use δiN

∞∑
i=1

ai δiN = aN

On the other hand, the Dirac delta is used to pick out a particular term in an
integral (see Section 17.4). For example, if we want to pick out the value of the
function f(x) when x = a in an integral, we use δ(x− a)∫ ∞

−∞
f(x) δ(x− a) dx = f(a)

Visualization of the Delta Function. To understand why the delta func-
tion under an integral sign picks out a particular value of the integrand, it may
help to think of the delta function as the limit of a sequence of steps δε(x),
Each step is narrower (width 2ε) and higher (height 1/(2ε)) than the previous
step, such that the area under each step is always one; see Figure Figure 17.6.2.

Figure 17.6.2 The function δ(x) can be approximated by a series of steps that
get progressively thinner and higher in such a way that the area under the
curve is always equal to one.

Then ∫ ∞
−∞

f(x) δε(x− a) dx (17.6.1)

give the average value of f(x) on the interval determined by ε. In the limit
that ε becomes infinitesimally small, then the peak becomes infinitely narrow
and infinitely high in just the right way to pick out the value of the function at
x = a.
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17.7 Dimensions of Step and Delta Functions
Dimensions of the Step Function. The definition of the step function,
(17.3.1), i.e.

Θ(x) =


0 x < 0
1
2 x = 0
1 x > 0

clearly shows that the value of the step function is either the pure number zero
or one, with no dimensions.

In Figure 17.3.4, you saw a figure where the step function was multiplied
by some other function f(x) so that the step function could be thought of as a
switch, that ‘‘turns on’’ the function f(x). In this case, the product function
f(x) Θ(x) inherits the dimensions of f(x).

Dimensions of the Delta Function. In contrast to the step function, above,
the delta function does have dimensions, but the dimensions change, according
to the context. They are determined by the defining equation (17.4.2), i.e.∫ c

b

δ(x) dx = 1 b < 0 < c

Since we can think of the differential dx as a little piece of x, it has the same
dimensions as x. The integral says to add up a bunch of little pieces that look
like δ(x) dx and end up with the dimensionless number one. That tells us that
the delta function δ(x) by itself has dimensions that are the inverse of the
dimensions of dx. For example, if x has dimensions of length L, then δ(x) has
dimensions of inverse length L−1.

17.8 Properties of the Dirac Delta Function
There are many properties of the delta function which follow from the defining
properties in Section 17.4. Some of these are:

δ(x) = δ(−x)
d

dx
δ(x) = − d

dx
δ(−x)∫ c

b

f(x) δ′(x− a) dx = −f ′(a)

δ(ax) = 1
|a|

δ(x)

δ
(
g(x)

)
=
∑
i

1
|g′(xi)|

δ(x− xi)

δ(x2 − a2) = |2a|−1 [δ(x− a) + δ(x+ a)]

δ
(
(x− a)(x− b)

)
= 1
|a− b|

[δ(x− a) + δ(x− b)]

where a and b are real-valued constants and the function g(x) has zeros at xi
with properties g(xi) = 0 and g′(xi) 6= 0. The first two properties show that
the delta function is even and its derivative is odd.
Sensemaking 17.8.1 Prove properties of the delta function. Prove
some or all of the properties of the Dirac delta function listed in Section 17.8.
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17.9 Representations of the Dirac Delta Func-
tion

Some other useful representations of the delta function are:

δ(x) = 1
2π

∫ ∞
−∞

eixt dt

δ(x) = lim
ε→0

1
2ε [Θ(x+ ε)−Θ(x− ε)]

δ(x) = lim
ε→0

1√
2π ε

exp
(
− x2

2ε2

)
δ(x) = 1

π
lim
ε→0

ε

x2 + ε2

δ(x) = lim
N→∞

sinNx
πx

δ(x) = 1
2
d2

dx2 |x|

δ(x) = 1
π2

∫ ∞
−∞

dt

t(t− x)

where Cauchy-Principal Value integration is implied in the last integral. (You
can find more limit representations of the delta function at the Wolfram Research
Site1 ).

In quantum mechanics, we sometimes use the closure relation given by:

δ(x− x′) =
∞∑
n=0

φ∗n(x)φn(x′)

where the φn are any complete set of orthonormal eigenfunctions for a hermitian
differential operator.

17.10 The Dirac Delta Function in Three Dimen-
sions

The three-dimensional delta function must satisfy:∫
all space

δ3(~r − ~r0) dτ = 1 (17.10.1)

where ~r = x x̂+ y ŷ + z ẑ is the position vector and ~r0 = x0 x̂+ y0 ŷ + z0 ẑ is
the position at which the “peak” of the delta function occurs. In rectangular
coordinates, it is just the product of three one-dimensional delta functions:

δ3(~r − ~r0) = δ(x− x0) δ(y − y0) δ(z − z0) (17.10.2)

so that:∫
all space

δ3(~r) dτ =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

δ(x) δ(y) δ(z) dx dy dz = 1 (17.10.3)

But in curvilinear coordinates, with dτ = huhvhw du dv dw, it has a Jacobian
in it. Thus,

δ3(~r − ~r0) 6= δ(u− u0) δ(v − v0) δ(w − w0) (17.10.4)
1functions.wolfram.com/GeneralizedFunctions/DiracDelta/09/

https://functions.wolfram.com/GeneralizedFunctions/DiracDelta/09/
https://functions.wolfram.com/GeneralizedFunctions/DiracDelta/09/
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but instead:

δ3(~r − ~r0) = 1
huhvhw

δ(u− u0) δ(v − v0) δ(w − w0) (17.10.5)

In particular, in cylindrical coordinates:

δ3(~r − ~r0) = 1
r
δ(r − r0) δ(θ − θ0) δ(z − z0) (17.10.6)

and in spherical coordinates:

δ3(~r − ~r0) = 1
r2 sin(θ)δ(r − r0) δ(θ − θ0) δ(φ− φ0) (17.10.7)

Just as with the delta function in one dimension, when the three-dimensional
delta function is part of an integrand, the integral just picks out the value of
the rest of the integrand at the point where the delta function has its peak.∫

all space

f(~r) δ3(~r − ~r0) dτ = f(~r0) (17.10.8)

17.11 The Exponential Representation of the Dirac
Delta Function

As mentioned in Section 17.9, the Dirac delta function can be written in the
form

δ(x) = 1
2π

∫ ∞
−∞

eikx dk, (17.11.1)

or more generally,

δ(x− x0) = 1
2π

∫ ∞
−∞

eik(x−x0) dk. (17.11.2)

We outline here the derivation of this representation.
In order to evaluate the integral, we introduce a regularization factor, e−kε,

as follows: ∫ ∞
−∞

eikx dk =
∫ 0

−∞
eikx dk +

∫ ∞
0

eikx dk

=
∫ ∞

0
e−ikx dk +

∫ ∞
0

eikx dk

=
∫ ∞

0
(eikx + e−ikx) dk

= lim
ε→0+

∫ ∞
0

(eikx + e−ikx) e−kε dk

= lim
ε→0+

∫ ∞
0

(eik(x+iε) + e−ik(x−iε)) dk

= lim
ε→0+

[
eik(x+iε)

i(x+ iε) + e−ik(x−iε)

−i(x− iε)

]∞
0

= lim
ε→0+

(
0 + 0− 1

i(x+ iε) −
1

−i(x− iε)

)
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= lim
ε→0+

(
i

x+ iε
− i

x− iε

)
= lim
ε→0+

2ε
x2 + ε2

=
{

0 x 6= 0
∞ x = 0

where we have used the fact that, for ε > 0, e−kε goes to 0 as k goes to ∞.1
It remains to show that the final expression has the correct normalization.

But ∫ ∞
−∞

2ε
x2 + ε2

dx = 2 arctan
(x
ε

) ∣∣∣∣∣
∞

−∞

= 2π, (17.11.3)

which is independent of ε, so taking the limit is trivial.

1The use of such regularization factors is quite common. Rigorous mathematical justifica-
tion can be given, but informal arguments along the lines above are usually sufficient—if the
informal argument works, the formal derivation should also, for an appropriate, reasonable
class of functions.



Chapter 18

Partial Differential Equations

18.1 Important PDEs in Physics
On this page you will find a list of most of the important PDEs in physics with
their names. Notice that the spatial derivatives always comes in the form of
the laplacian ∇2. This particular spatial dependence occurs in physics PDEs
because space is rotationally invariant. Also notice that some of the equation
have no time derivatives, some have a first order time derivative, and some
have a second order time derivative. This difference is the foundation of an
important classification scheme (see Section 18.2) and also affects what kinds
of initial conditions are appropriate to guarantee that a unique solution exists
(see Section 18.3).

Names and forms for important partial differential equations in physics.
Laplace’s Equation:

Many time-independent problems are described by Laplace’s equation. This
is defined for ψ = ψ(x, y, z) by:

∇2ψ = ∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2 = 0. (18.1.1)

The differential operator, ∇2, defined by eq.(1) is called the Laplacian
operator, or just the Laplacian for short. Some examples of Laplace’s equation
are the electrostatic potential in a charge-free region, the gravitational potential
in a matter-free region, the steady-state temperature in a region with no heat
source, the velocity potential for an incompressible fluid in a region with no
vortices and no sources or sinks.

Poisson’s Equation:
Poisson’s equation is like Laplace’s equation except that it allows an inho-

mogeneous term, f(x, y, z), known as the source density. It has the form:

∇2ψ = f(x, y, z) (18.1.2)

Schrödinger’s Equation:
A great deal of non-relativistic quantum mechanics is devoted to the study

of the solutions to the time-dependent Schrödinger equation:

i~
∂ψ

∂t
= Hψ = − ~2

2m∇
2ψ + V (x, y, z)ψ. (18.1.3)

This equation governs the time dependence of the wave-function of a particle
moving in a given potential, V (x, y, z). A special role is played by solutions

188
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to (4) that have the simple form: ψ = φ(x, y, z) exp(−iEt/~). The function
φ satisfies the time-independent Schrödinger equation or, more correctly, the
Schrödinger (or energy) eigenvalue equation:

− ~2

2m∇
2φ+ V (x, y, z)φ = Eφ. (18.1.4)

In both of these equations ~ and m represent real constants. E is a constant
that emerges during the separation of variables procedure. i, as usual, satisfies
i2 = −1.

The Diffusion Equation:
The pde governing the concentration of a diffusing substance or the non-

steady-state temperature in a region with no heat sources is the diffusion
equation:

∂ψ

∂t
− κ∇2ψ = 0. (18.1.5)

κ is a real constant called the diffusivity.
The Wave Equation:
Wave propagation, including waves on strings or membranes, pressure waves

in gasses, liquids or solids, electromagnetic waves and gravitational waves, and
the current or potential along a transmission line all satisfy the following wave
equation:

− 1
v2
∂2ψ

∂t2
+∇2ψ = 0. (18.1.6)

The real constant v can be interpreted as the speed of the corresponding
wave.

The Klein-Gordon Equation:
Disturbances traveling through fields that mediate forces with a finite range,

satisfy a modification of the wave equation called the Klein-Gordon equation.
It is given by:

− 1
c2
∂2ψ

∂t2
+∇2ψ + m2c2

~2 ψ = 0. (18.1.7)

The coefficients c, ~ and m all represent constants.
Helmholtz’s Equation:
The equation:

∇2ψ + k2ψ = 0 (18.1.8)

is known as Helmholtz’s equation and arises as the time-independent part of the
diffusion or wave equations. k is a constant that emerges during the separation
of variables procedure.

18.2 Classification of PDEs

18.2.1 Why do you want to classify solutions?
If we can classify a PDE that we are trying to solve, according to the scheme
given below, it will help us extend qualitative knowledge that we have about
the nature of solutions of similar PDEs to the current case. Most importantly,
the types of initial conditions that are needed to ensure that the solution is
unique vary according to the classification–see Section 18.3.

In physics situations, the classification is usually obvious: if there are
two time derivatives, the equation is hyperbolic and we will need two initial
conditions on the entire spatial region to make the solution unique; if there is
only a single time derivative, the equation is parabolic and we will need only a
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single initial condition; if the equation has no time derivatives, the equation is
elliptic and the solutions are qualitatively different from the previous two cases.
You should look at the important PDEs in physics listed in Section 18.1 and
classify each one.

If you want to see the formal mathematics for the classification (optional),
read on:

18.2.2 Form of the equation
The most general 2nd order, linear, PDE can be written:

Lψ = b (18.2.1)

where

Lψ =
4∑

i,j=1
Aij(xk) ∂2ψ

∂xi∂xj
+

4∑
i=1

Bi(xk) ∂ψ
∂xi

+ C(xk)ψ (18.2.2)

and b(xk) is a source term which may depend on the spatial variables (xk).

18.2.3 Optional Mathematical Details of the Classification
Scheme

The PDE is classified according to the signs of the eigenvalues λi(xk) of the
matrix of functions Aij(xk).

1. Elliptic: λi(xk) are nowhere vanishing. All have the same sign. Ex:
Poisson, Laplace, Helmholtz

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (18.2.3)

Aij =

1 0 0
0 1 0
0 0 1

 (18.2.4)

2. Parabolic: One eigenvalue vanishes everywhere (usually time dependence),
the others are nowhere vanishing and have the same sign. Ex: Diffusion,
Schroedinger

Aij =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (18.2.5)

3. Hyperbolic: All eigenvalues are nowhere vanishing. One sign differs from
the others. Ex: Wave, Klein-Gordon

Aij =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (18.2.6)
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18.3 Initial and Boundary Conditions on PDEs
in Physics

18.3.1 The Main Idea: Initial Conditions
In physics situations, the classification and types of boundary conditions are
typically straightforward: if there are two time derivatives, the equation is
hyperbolic and we will need two initial conditions on the entire spatial region to
make the solution unique; if there is only a single time derivative, the equation
is parabolic and we will need only a single initial condition; if the equation has
no time derivatives, the equation is elliptic and the solutions are qualitatively
different from the previous two cases. It is easiest to understand the elliptic
case from an explicit example.

18.3.2 The Main Idea: Spatial Boundary Conditions
In addition to initial conditions, we will need boundary conditions on the
spatial variables. The three main type of boundary conditions encountered in
physics are Dirichlet, when the value of the solution of the PDE goes to zero
on a continuous portion of the boundary, Neumann, when the normal (to the
boundary) derivative of the solution goes to zero on a continuous portion of
the boundary, and periodic, when a spatial variable is periodic (for example, on
a ring).

The theorems in the optional subsection below, give examples of when a
PDE with boundary and initial conditions is guaranteed to have a unique
solution. The theorems below consider cases when the (spatial) boundary
conditions are either Dirichlet or Neumann on each piecewise smooth piece of
the boundary. There are other theorems, not given here, that cover other cases,
particularly periodic boundary conditions.

As a mathematical exercise, it would be easy to write down PDEs that
do not satisfy a uniqueness theorem. Fortunately, for physicists, the universe
provides evidence that unique solutions to the PDEs that are important to
physics do exist. So, usually we are not concerned about using the theorems to
prove that a solution exists, but rather we are interested in using the theorems
to tell us how many of which kinds of boundary and initial conditions we need
to specify to ensure that the solution is unique.

18.3.3 Optional Mathematical Details
18.3.3.1 Elliptic Equations

Example: Poisson’s Equation

∇2ψ(xk) = f(xk) (18.3.1)

Theorem: If ψ(xk) satisfies Poisson’s equation throughout a closed, bounded
region R and satisfies Dirichlet conditions on the the boundary ∂R of R, then
ψ is unique.

Theorem: If ψ(xk) satisfies Poisson’s equation throughout a closed, bounded
region R and satisfies Neumann conditions on the the boundary ∂R of R, then
ψ is unique up to an additive constant.

Corollary: If the boundary is piecewise smooth, you can specify either
Dirichlet or Neumann conditions on each piece. If Dirichlet conditions are
satisfied on at least one piece then ψ is unique.
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Corollary: If the region R is unbounded (in some or all directions) but
ψ = o(r−1/2) as r → ∞ (i.e. ψ falls off faster than r−1/2) in the unbounded
directions, then ψ is unique.

18.3.3.2 Parabolic Equations

Example: Inhomogeneous Diffusion Equation(
∂

∂t
− k∇2

)
ψ(t, xk) = f(xk) (18.3.2)

Theorem: If ψ(t, xk) satisfies the inhomogeneous diffusion equation through-
out a closed, bounded region R and satisfies either Dirichlet or Neumann
conditions on the the boundary ∂R of R, and ψ satisfies the initial condition

ψ(t = 0, xk) = g(xk) (18.3.3)

then ψ is unique.
Corollary: If the spatial boundary is piecewise smooth, you can specify

either Dirichlet or Neumann conditions on each piece.
Corollary: If the region R is unbounded (in some or all spatial directions)

but ψ = o(r−1/2) as r →∞ (i.e. ψ falls off faster than r−1/2) in the unbounded
directions, then ψ is unique.

18.3.3.3 Hyperbolic Equations

Example: Inhomogeneous Wave Equation(
−1
v2

∂2

∂t2
+∇2

)
ψ(t, xk) = f(xk) (18.3.4)

Theorem: If ψ(t, xk) satisfies the inhomogeneous wave equation throughout
a closed, bounded region R and satisfies either Dirichlet or Neumann conditions
on the the boundary ∂R of R, and ψ satisfies the two initial conditions

ψ(t = 0, xk) = g(xk) (18.3.5)

∂ψ

∂t
(t = 0, xk) = h(xk) (18.3.6)

then ψ is unique.
Corollary: If the spatial boundary is piecewise smooth, you can specify

either Dirichlet or Neumann conditions on each piece.
Corollary: If the region R is unbounded (in some or all spatial directions)

but ψ = o(r−1/2) as r →∞ (i.e. ψ falls off faster than r−1/2) in the unbounded
directions, then ψ is unique.

18.4 Separation of Variables
Definition 18.4.1 Separation of Variables. Separation of variables is
a procedure which turns a partial differential equation into a set of ordinary
differential equations. ♦

The procedure only works in very special cases involving a high degree
of symmetry. Remarkably, the method works for many important physics
examples. Furthermore, these examples form important limiting cases that can
help with the interpretation of solutions of pde’s (typically numerical) that are
not obtained by this procedure. Here, we will demonstrate the method on a
simple example, the wave equation.
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Method. Step 1: Write the partial differential equation in appropriate coor-
dinate system. For the wave equation we have:

∂2f

∂x2 −
1
v2
∂2f

∂t2
= 0 (18.4.1)

Step 2: Ansatz: ASSUME that the solution f(x, t) can be written as the
product of functions, each of which depends on only one variable, in this case x
or t, i.e. assume

f(x, t) = X(x)T (t) (18.4.2)

This is a very strong assumption. Not all solutions will be of this form.
However, it turns out that all of the solutions can be written as linear combina-
tions of solutions of this form. The study of when and why this works is called
Sturm-Liouville theory.

Plug this assumed solution (18.4.2) into the partial differential equation
(18.4.1). Because of the special form for f , the partial derivatives each act on
only one of the factors in f .

T
d2X

dx2 −
1
v2X

d2T

dt2
= 0 (18.4.3)

Any partial derivatives that act only on a function of a single variable may
be rewritten as total derivatives.

Step 3: Divide by f in the form of (18.4.2). Many, many students forget
this step. Don’t be one of them! The rest of the procedure doesn’t work if you
do.

1
X

d2X

dx2 −
1
v2

1
T

d2T

dt2
= 0 (18.4.4)

Step 4: Isolate all of the dependence on one coordinate on one side of the
equation. Do as much algebra as you need to do to achieve this. In our example,
notice that in (18.4.4), all of the t dependence is already in one term while all
of the dependence on the x variable is in the other term. In this case, the t
dependence is trivially isolated by putting the t term on the other side of the
equation, without any other algebra on our part.

1
X

d2X

dx2 = 1
v2

1
T

d2T

dt2
(18.4.5)

Step 5: Now imagine changing the isolated variable t by a small amount.
In principle, the right-hand side of (18.4.5) could change, but nothing on the
left-hand side would. (This argument is the magic of the separation of variables
procedure–compare it to arguments about constants of the motion from classical
mechanics.) Therefore, if the equation is to be true for all values of t, the
particular combination of t dependence on the right-hand side must be constant.
We will call this constant A. Note that we don’t know (yet) whether the
constant is positive or negative.

1
X

d2X

dx2 = 1
v2

1
T

d2T

dt2
≡ A (18.4.6)

In this way we have broken our original partial differential equation up into
a pair of equations, one of which is an ordinary differential equation involving
only t, the other is an ordinary differential equation involving only x.

1
X

d2X

dx2 = A (18.4.7)
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1
v2

1
T

d2T

dt2
= A (18.4.8)

The separation constant A appears in both equations.
Step 6: Write each equation in standard form by multiplying each equation

by its unknown function to clear it from the denominator.

d2X

dx2 −AX = 0 (18.4.9)

d2T

dt2
−Av2T = 0 (18.4.10)

Notice that (18.4.9) is an eigenvalue equation for the operator d2

dx2 . At the
moment, the eigenvalue A could be anything. We will use the spatial boundary
conditions for a problem that we want to solve to find the possible values of
A. Once we have found the possible eigenvalues A, (18.4.10) becomes a second
order ordinary differential equation with constant coefficients which you should
know how to solve. It is NOT an eigenvalue equation because the value of A is
now known. In general, if you are doing the separation of varibles process for n
variables, you will get n− 1 separation constants and therefore n− 1 eigenvalue
equations and an nth ODE which is NOT an eigenvalue equation.

18.5 Separation of Variables for the Hydrogen
Atom

We will use the separation of variables procedure Section 18.4 on the Schrödinger
equation in a central potential. Most of the calculation will involve using this
procedure on the Laplacian operator. Since the Laplacian comes up in almost
all physics problems with spherical symmetry, you will find yourself using the
results of this section many times in your career.

Because there are several spatial dimensions, the procedure requires a
number of rounds, each consisting of the same set of six steps. In the first
round, we will separate out an ordinary differential equation in the time variable.

Step 1: Write the partial differential equation in appropriate coordinate
system. For Schrödinger’s equation in any potential we have:

HopΨ = i~
∂Ψ
∂t

(18.5.1)

Step 2: Assume that the solution Ψ can be written as the product of
functions, at least one of which depends on only one variable, in this case t.
The other function(s) must not depend at all on this variable, i.e. assume

Ψ(r, θ, φ, t) = ψ(r, θ, φ)T (t) (18.5.2)

Plug this assumed solution (18.5.2) into the partial differential equation
(18.5.1). Because of the special form for Ψ, the partial derivatives each act on
only one of the factors in Ψ:

(Hopψ)T = i~ψ
dT

dt
(18.5.3)

Any partial derivatives that act only on a function of a single variable may be
rewritten as total derivatives.

Step 3: Divide by Ψ in the form of (18.5.2).

1
ψ

(Hopψ) = i~
dT

dt

1
T

(18.5.4)
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Step 4: Isolate all of the dependence on one coordinate on one side of the
equation. Do as much algebra as you need to do to achieve this. In our example,
notice that in (18.5.4), all of the t dependence is on the right-hand side of the
equation while all of the dependence on the spatial variable is on the other side.
In this case, the t dependence is already isolated, without any algebra on our
part.

Step 5: Now imagine changing the isolated variable t by a small amount.
In principle, the right-hand side of (18.5.4) could change, but nothing on the
left-hand side would. Therefore, if the equation is to be true for all values of
t, the particular combination of t dependence on the right-hand side must be
constant. By convention, we call this constant E.

1
ψ

(Hopψ) = i~
dT

dt

1
T

def= E (18.5.5)

In this way we have broken our original partial differential equation up into a
pair of equations, one of which is an ordinary differential equation involving
only t, the other is a partial differential equation involving only the three spatial
variables:

1
ψ
Hopψ = E (18.5.6)

i~
dT

dt

1
T

= E (18.5.7)

The separation constant E appears in both equations.
Step 6: Write each equation in standard form by multiplying each equation

by its unknown function to clear it from the denominator:

Hopψ = Eψ (18.5.8)
dT

dt
= − i

~
ET (18.5.9)

Notice that (18.5.8) is an eigenvalue equation for the operator Hop. You may
never have thought of the derivation of this “time independent version of the
Schrödinger equation” from the Schrödinger equation as just a simple example
of the separation of variables procedure. At the moment, the eigenvalue E
could be anything. Much of the rest of the Paradigm will be directed toward
finding the possible values of E!

Now we must repeat the steps until each of the variables has been separated
out into its own ordinary differential equation. In the next round, we will isolate
the r dependence.

Step 1: Since we want to isolate the r dependence, we must rewrite Hop to
show the r dependence explicitly using (24.3.8):

− ~2

2µ

[
1
r2

∂

∂r

(
r2 ∂

∂r

)
− 1

~2r2 L
2
op

]
ψ + U(r)ψ = Eψ (18.5.10)

Step 2: Assume ψ(r, θ, φ) = R(r)Y (θ, φ).

− ~2

2µ

[
1
r2

d

dr

(
r2 dR

dr

)
Y − 1

~2r2 R(L2
opY )

]
+ U(r)RY = ERY (18.5.11)

Step 3:

− ~2

2µ

[
1
r2

d

dr

1
R

(
r2 dR

dr

)
− 1

~2r2
1
Y

(L2
opY )

]
+ U(r) = E (18.5.12)
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Step 4: To isolate the r dependence we must first clear the r dependence from
the angular term (involving angular derivatives in Lop and angular functions in
Y ). To do this, we need to multiply (18.5.12) by r2 to clear this factor out of
the denominators of the angular pieces. Further rearranging (18.5.12) to get all
of the r dependence on the right-hand side, we obtain:

− 1
~2

1
Y

(L2
opY ) = − d

dr

(
r2 dR

dr

)
1
R
− 2µ

~2

(
E − U(r)

)
r2 (18.5.13)

Step 5: In this case, I have called the separation constant A.

− 1
~2

1
Y

(L2
opY ) = − d

dr

(
r2 dR

dr

)
1
R
− 2µ

~2

(
E − U(r)

)
r2 def= A (18.5.14)

In principle, A can be any complex number.
Step 6: Rearranging (18.5.14) slightly, we obtain the radial and angular

equations in the more standard form:

d

dr

(
r2 dR

dr

)
+ 2µ

~2

(
E − U(r)

)
r2R+AR = 0 (18.5.15)

L2
opY + ~2AY = 0 (18.5.16)

Notice that the only place that the central potential enters the set of differential
equations is in the radial equation (18.5.15). (18.5.15) is not yet in the form
of an eigenvalue equation since it contains two unknown constants E and A.
(18.5.16) is an eigenvalue equation for the operator L2

op with eigenvalue ~2A; it
is independent of the form of the central potential.

In the last round, we must separate the θ dependence from the φ dependence.
I will leave this as an important Practice Problem. The answer is:

sin θ d
dθ

(
sin θdP

dθ

)
−A sin2 θP −BP = 0 (18.5.17)

d2Φ
dφ2 +BΦ = 0 (18.5.18)

is an eigenvalue equation for the operator d2/dφ2 with eigenvalue B. is not yet
in the form of an eigenvalue equation since it contains two unknown constants
A and B.

We started with a partial differential equation in four variables and we
ended up with four ordinary differential equations (18.5.9), (18.5.15), (18.5.17),
(18.5.18) by introducing three separation constants (E, A, and B). You should
always get one fewer separation constant than the number of variables you
started with; each separation constant should appear in two of the final set of
equations.
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Eigen Expansions

19.1 Sturm–Liouville Theory
The Main Idea. When you use the separation of variables procedure on a
PDE, you end up with one or more ODEs that are eigenvalue problems, i.e.
they contain an unknown constant that comes from the separation constants.
These ODEs are called Sturm-Liouville equations. By solving the ODEs

for particular boundary conditions, we find particular allowed values for the
eigenvalues. The essence of the theorems below is that the solutions of the
ODEs for these special boundary conditions and eigenvalues form an orthogonal
set. These solutions can be used to form a basis of solutions of the original
PDE. The rest of this section states the technical mathematics theorems for
the most important cases where this process works. If you enjoy mathematics,
please read on. If not, then rest assured that the mathematics guarantees that
the separation of variables process will work whenever you are asked to use it
in undergraduate physics.

19.1.1 Optional Mathematical Details
Sturm-Liouville Theory for Boundary-Value Problems. A second or-
der Sturm–Liouville problem is a homogeneous boundary value problem of the
form

[P (x) y′]′ +Q(x) y + λw(x) y = 0 (19.1.1)
α1 y(a) + β1 y

′(a) = 0 (19.1.2)
α2 y(b) + β2 y

′(b) = 0 (19.1.3)

where P, P ′, Q,w are continuous and real on [a, b], and P and w are positive.
Theorem: For y1 and y2 two linearly independent solutions of the homoge-

neous differential equation, nontrivial solutions of the homogeneous boundary
value problem exist iff∣∣∣∣α1 y1(a) + β1 y

′
1(a) α1 y2(a) + β1 y

′
2(a)

α2 y1(b) + β2 y
′
1(b) α2 y2(b) + β2 y

′
2(b)

∣∣∣∣ = 0 (19.1.4)

Definition: Values of λ for which nontrivial solutions exist are called eigen-
values. The corresponding solutions are called eigenfunctions.

Theorem: The eigenvalues of a homogeneous Sturm-Liouville problem are
real and non-negative and can be arranged in a strictly increasing infinite
sequence

0 ≤ λ1 < λ2 < λ3 < . . . (19.1.5)

197



CHAPTER 19. EIGEN EXPANSIONS 198

and λn →∞ as n→∞.
Theorem: For each eigenvalue, there exists exactly one linearly independent

eigenfunction, yn. These eigenfunctions for differing eigenvalues are orthogonal
with respect to the inner product:

(yn, ym)w =
∫ b

a

yn(x) ym(x)w(x) dx = Nnδn,m (19.1.6)

Theorem: The eigenfunctions yn span the vector space of piecewise smooth
functions satisfying the boundary conditions of the Sturm-Liouville problem.
(Convergence in the mean, not pointwise.)

f(x) =
∞∑
n=1

cn yn(x) (19.1.7)

where the cn’s are given by:

cn = 1
Nn

(yn, f)w = 1
Nn

∫ b

a

y∗n(x) f(x)w(x) dx (19.1.8)

Sturm-Liouville Theory for Periodic Systems. A second order periodic
Sturm–Liouville problem is a homogeneous problem of the form

[P (x) y′]′ +Q(x) y + λw(x) y = 0 (19.1.9)

where P, P ′, Q,w are continuous and real on [a, b], and P and w are positive,
and [

P (x)
(
f∗(x) g′(x)− f∗′(x) g(x)

)]∣∣b
a

= 0 (19.1.10)

for f(x) and g(x) and two vectors in the vector space.
Definition: Values of λ for which nontrivial solutions of the periodic Sturm-

Liouville problem exist are called eigenvalues. The corresponding solutions are
called eigenfunctions.

Theorem: The eigenvalues of a periodic Sturm-Liouville problem are real.
Theorem: For each eigenvalue, there exist linearly independent eigenfunc-

tions, yn. These eigenfunctions for differing eigenvalues are orthogonal with
respect to the inner product:

(yn, ym)w =
∫ b

a

yn(x) ym(x)w(x) dx = Nnδn,m (19.1.11)

Eigenfunctions with the same eigenvalue can be orthogonalized using Gram-
Schmidt orthogonalization.

Theorem: The eigenfunctions yn span the vector space of piecewise smooth
functions satisfying the boundary conditions of the Sturm-Liouville problem.
(Convergence in the mean, not pointwise.)

f(x) =
∞∑
n=1

cn yn(x) (19.1.12)

where the cn’s are given by:

cn = 1
Nn

(yn, f)w = 1
Nn

∫ b

a

y∗n(x) f(x)w(x) dx (19.1.13)
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19.2 Legendre Polynomials
Legendre polynomials can be found from Rodrigues’ formula

P`(z) = 1
2``!

d`

dz`
(
z2 − 1

)` (19.2.1)

Rodrigues’ Formula can be used to generate the polynomials quickly. To do
this, write (

z2 − 1
)` = (z − 1)`(z + 1)` = a`b` (19.2.2)

and use the product rule

d`

dz`
(
z2 − 1

)` =
(
d`a

dz`

)
b+ `

(
d`−1a

dz`−1

)(
db

dz

)
+ `(`− 1)

2!

(
d`−2a

dz`−2

)(
d2b

dz2

)
+ ...+ a

(
d`b

dz`

)
(19.2.3)

where the coefficients in the ith term in the product is the binomial coefficient(
`

i

)
=
(

`

`− i

)
= `!

(`− i)! i! (19.2.4)

The first few Legendre polynomials are:

P0(z) = 1 (19.2.5)
P1(z) = z (19.2.6)

P2(z) = 1
2 (3z2 − 1) (19.2.7)

P3(z) = 1
2 (5z3 − 3z) (19.2.8)

P4(z) = 1
8 (35z4 − 30z2 + 3) (19.2.9)

P5(z) = 1
8 (63z5 − 70z3 + 15z) (19.2.10)

There are several useful patterns to the Legendre polynomials:

• P`(z) is a polynomial of degree `.

• Each P`(z) contains only odd or only even powers of z, depending on
whether ` is even or odd. Therefore, each P`(z) is either an even or an
odd function.

• The overall coefficient for each solution is conventionally chosen so that
P`(1) = 1. As discussed in Section 19.3, this is an inconvenient convention
that we are stuck with!

• Since the differential operator in (16.2.1) is Hermitian (unproven), we are
guaranteed by a deep theorem of mathematics (Sturm-Liouville theory, see
Section 19.1) that the Legendre polynomials are orthogonal for different
values of ` (just as with Fourier series)

The orthogonality and normalization properties of the Legendre polyno-
mials can be found by using Rodrigues’ Formula and repeated integration
by parts, noting that the “surface terms” always vanish.
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i.e.
1∫
−1

P ∗k (z)P`(z) dz = δk`

`+ 1
2

(19.2.11)

The “squared norm” of P` is just 1/(`+ 1
2 ). To normalize each P`(z), it

should be multiplied by
√
`+ 1

2 .

Notice that Legendre’s equation, i.e. the differential equation

∂2P

∂z2 −
2z

1− z2
∂P

∂z
+ `(`+ 1)

1− z2 P = 0 (19.2.12)

is a different equation for different values of `. For a given value of `, you should
expect two solutions of (19.2.12). We have only given one, for the special case
` ∈ {0, 1, 2, 3, . . . }. It turns out that the other solution for these values of `
and both solutions for other values ` are not regular (i.e. blow up) at z = ±1.
We can often discard these irregular solutions as unphysical for the problems
we are solving.

19.3 Legendre Polynomial Series
There is a very powerful mathematical theorem which says that any sufficiently
smooth function f(z), defined on the interval −1 < z < 1, can be expanded as
a linear combination of Legendre polynomials

f(z) =
∞∑
`=0

c` P`(z) (19.3.1)

(This theorem is the analogue of the theorem which says that any sufficiently
smooth periodic function can be expanded in a Fourier series.) You will have
several occasions in physics to expand functions in Legendre polynomial series,
so we will explore the technique in this section.

We can find the coefficients c` by taking the inner product of both sides of
(19.3.1) in turn with each “basis vector” P` and using (19.2.11). This yields

1∫
−1

P ∗k (z) f(z) dz =
1∫
−1

P ∗k (z)
∞∑
`=0

c` P`(z) dz

=
∞∑
`=0

c`

1∫
−1

P ∗k (z)P`(z) dz

=
∞∑
`=0

c`
δk`

`+ 1
2

= ck

k + 1
2

(19.3.2)

or equivalently

ck =
(
k + 1

2

) 1∫
−1

P ∗k (z) f(z) dz (19.3.3)
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This expression should be compared with the exponential version of a Fourier
series for f(z) on the same interval −1 ≤ z ≤ 1, namely

f(z) =
∞∑

n=−∞
Cn e

inπz (19.3.4)

where

Cn = 1
2

1∫
−1

e−inπzf(z) dz (19.3.5)

Note the analogous role played by the normalization constants k + 1
2 and

1
2 . If we had made an unconventional, but more convenient, choice for the
normalization for the Legendre polynomials such that the value of the integrals
in (19.2.11) were simply δk`, then we would not need to carry around the extra
factor of k + 1

2 in (19.3.3).

Example 19.3.1 Example: Legendre Expansion of ε(z). Consider the
step function

ε(z) = 2 Θ(z)− 1 =
{

+1 (z > 0)
−1 (z < 0)

(19.3.6)

where Θ is the Heaviside step function; note that ε(z) is an odd function of z.
Using (19.3.3) leads to

c` =
(
`+ 1

2

) 1∫
−1

P ∗` (z) ε(z) dz

= −
(
`+ 1

2

) 0∫
−1

P ∗` (z) dz +
(
`+ 1

2

)∫ 1

0
P ∗` (z) dz (19.3.7)

and each integral in the final expression is an elementary integral of a polynomial.
Furthermore, it is easily seen that these two integrals cancel if ` is even, and
add if ` is odd, so that

c` =


0 (` even)

2
(
`+ 1

2

)∫ 1

0
P ∗` (z) dz (` odd)

(19.3.8)

These coefficients are easily evaluated on Maple for as many values of ` as
desired. �

19.4 Legendre Expansions
Legendre functions have many remarkable properties.

Figure 19.4.1 below shows the mth order Legendre expansion of a given
function.
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Figure 19.4.1 The mth order Legendre expansion of a given function.
Figure 19.4.2 below allows you to see the effect of varying the Legendre

coefficients individually while trying to guess the Legendre expansion of a given
function, using unnormalized Legendre polynomials.

Figure 19.4.2 Varying the individual Legendre coefficients, using unnormalized
Legendre polynomials.

Figure 19.4.3 below allows you to see the effect of varying the Legendre
coefficients individually while trying to guess the Legendre expansion of a given
function, using normalized Legendre polynomials. 1

Figure 19.4.3 Varying the individual Legendre coefficients, using normalized
Legendre polynomials.

1Since the normalization involves square roots, the discrete coefficients allowed in Fig-
ure 19.4.3 are not sufficient to exactly match the given function. How close can you get?
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19.5 Legendre Series: Worked Example
You are encouraged to explore the Legendre basis functions using the applet in
Figure 19.4.1 before working through the example here.

The unrenormalized Legendre polynomials can be defined as

P0(x) = 1, (19.5.1)
P1(x) = x, (19.5.2)

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (19.5.3)

and satisfy the orthogonality condition∫ 1

−1
Pm(x)Pn(x) = 2

2n+ 1δmn. (19.5.4)

We can expand any function f(x) on the interval −1 ≤ x ≤ 1 in terms of these
Legendre polynomials as

f(x) =
∞∑
0
amPm(x) (19.5.5)

and use (19.5.4) to determine the coefficients as

an = 2n+ 1
2

∫ 1

−1
f(x)Pn(x). (19.5.6)

You can use the Sage code below to display the Legendre polynomial Pn(x)
for any integer value of n, and then its graph.

pretty_print_default(True)
n=2
legendre_P(n,x)

plot(legendre_P(n,x),x,-1,1)

Now we will use the integral expressions (19.5.6) for the coefficients in a
Legendre expansion to work out an example, the Legendre series for the function
f(x) = 3

2 (x2 + x3). Then you will plot the individual terms in the Legendre
series and their partial sums using an applet.

You can use the Sage code below to calculate the value of the integral for
the first coefficient, a0.

m=0
f=3/2*(x^2+x^3)
(2*m+1)/2* integrate(f*legendre_P(m,x),x,-1,1)

Using the applet in Figure 19.5.1, set the a0 slider to correspond to the value
you just calcuated. 1 Compare your approximate Legendre series, containing
just one term (shown in green), to the actual function (shown in blue).

1You can use the right and left arrow keys to move the selected slider in increments of 0.5;
holding down the shift key as well changes the increment to 0.05.
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Figure 19.5.1 Varying the individual Legendre coefficients, using unnormalized
Legendre polynomials.

Now you can alter the Sage code above to compute the other coefficients.
After each calculation, move the corresponding slider to the value you obtain,
and compare the approximation to the given function.

If you move the sliders one by one, resetting the others to zero, you will see
how much each individual term contributes to the Legendre series.

If you don’t reset the other sliders, but instead combine the contributions
from each slider, the applet plots the sum of the corresponding terms (in green),
representing an approximation to the actual function (in blue). In the given
example, you should obtain an exact match when you include all of the terms
with m = 0, 1, 2, 3. In general, there are an infinite number of nonzero terms
in the Legendre series; your approximation will get better and better as you
include more terms.

19.6 Associated Legendre Functions
We now return to (24.11.6) to consider the cases with m 6= 0. We can solve these
equations with (a slightly more sophisticated version of) the series techniques
from the m = 0 case. We would again find solutions that are regular at z = ±1
whenever we choose A = −`(`+ 1) for ` ∈ {0, 1, 2, 3, ...}. With this value for A,
we obtain the standard form of Legendre’s associated equation, namely(

∂2

∂z2 −
2z

1− z2
∂

∂z
− m2

(1− z2)2 + `(`+ 1)
1− z2

)
P (z) = 0 (19.6.1)

Recall that this equation was obtained by separating variables in spherical
coordinates. Solutions of this equation which are regular at z = ±1 are called
associated Legendre functions, and turn out to be given by

P−m` (z) = Pm` (z) = (1− z2)m/2 d
m

dzm
(P`(z))

= (1− z2)m/2 d
m+`

dzm+`

(
(z2 − 1)`

)
(19.6.2)

where m ≥ 0. 1 Note that if z = cos θ, then P`(z) is a polynomial in cos θ,
while

(1− z2)m/2 = (sin2θ)m/2 = sinmθ (19.6.3)

so that Pm` (z) is a polynomial in cos θ times a factor of sinmθ. Some other
properties of the associated Legendre functions are

1Some authors define P−m
`

(z) differently.
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• Pm` (z) = 0 if m > `

• P−m` (z) = Pm` (z)

• Pm` (±1) = 0 for m 6= 0 (cf. factor of (1− z2)m/2)

• Pm` (−z) = (−1)`mPm` (z) (behavior under parity)

•
1∫
−1

Pm` (z)Pmq (z) dz = 2
(2`+ 1)

(`+m)!
(`−m)! δ`q

The last property shows that for each given value of m, the Associated Legendre
functions form an orthonormal basis on the interval −1 ≤ z ≤ 1. Any function
on this interval can be expanded in terms of anyone of these bases.

19.7 Spherical Harmonics
We have found that normalized solutions of the φ equation (18.5.18) satisfying
periodic boundary conditions are

Φ(φ) = 1√
2π

eimφ (m = 0,±1,±2, ...) (19.7.1)

and normalized solutions of the θ equation (18.5.17) which are regular at the
poles are given by

P (cos θ) =

√
(2`+ 1)

2
(`− |m|)!
(`+ |m|)! P

m
` (cos θ) (19.7.2)

Combining these yields via multiplication (we assumed solutions of this type
when we first did the separation of variables procedure), we obtain the spherical
harmonics

Y m` (θ, φ) = (−1)(m+|m|)/2

√
(2`+ 1)

4π
(`− |m|)!
(`+ |m|)! P

m
` (cos θ) eimφ (19.7.3)

where the somewhat peculiar choice of phase is conventional.
The spherical harmonics are orthonormal on the unit sphere:

2π∫
0

π∫
0

(
Y m1
`1

)∗
Y m2
`2

sin θ dθ dφ = δ`1`2δm1m2 (19.7.4)

since dz = sin θ dθ. They are complete in the sense that any sufficiently smooth
function f on the unit sphere can be expanded in a Laplace series as

f(θ, φ) =
∞∑
`=0

∑̀
m=−`

a`m Y
m
` (θ, φ) (19.7.5)

where

a`m =
2π∫
0

π∫
0

(Y m` )∗ f(θ, φ) sin θ dθ dφ (19.7.6)

Example 19.7.1 Example. Suppose you want a function of (θ, φ) which
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satisfies

f(θ, φ) =
{

sin θ 0 < θ < π
2

0 otherwise
(19.7.7)

Then f takes the form (19.7.5), and the constants a`m can be determined from
(19.7.6), yielding

a`m =
2π∫
0

π/2∫
0

(Y m` )∗ sin2θ dθ dφ

= N`m

2π∫
0

e−imφ dφ

π/2∫
0

Pm` (cos θ) sin2θ dθ (19.7.8)

where

N`m = (−1)(m+|m|)/2

√
(2`+ 1)

4π
(`− |m|)!
(`+ |m|)! (19.7.9)

Thus,

a`m =


0 (m 6= 0)√

(2`+ 1)π
π/2∫
0

P`(cos θ) sin2θ dθ (m = 0)

For m = 0, the integral is most easily computed with the substitution z = cos θ;
the first few coefficients are:

a00 = π

8 a10 = 1
2 a20 = −5π

64
a30 = − 7

12 a40 = − 9π
512 a50 = 77

240 (19.7.10)

(each of which should be multiplied by
√

4π/(2`+ 1)). As you can check by
graphing, however, it requires at least twice this many terms to obtain a good
approximation. �

19.8 Visualizing Spherical Harmonics
The spherical harmonics

Y`
m(θ, φ) = NeimφP`

m(cos θ)

with ` a nonnegative integer and m an integer satisfying |m| ≤ ` are solutions
of the partial differential equation

r2∇2Y`
m = −`(`+ 1)Y`m

where P`m is an associated Legendre polynomial, and ∇2 is the Laplacian on
the sphere, that is

∇2f = 1
sin θ

∂

∂θ

(
sin θ∂f

∂θ

)
+ 1
r2 sin2 θ

∂2f

∂φ2

and N is a normalization factor.
You can print the first few spherical harmonics using the following Sage

code.
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pretty_print_default(True)
theta ,phi=var(’theta ,phi’)
@interact
def _(l=(0,5,1)):

@interact
def _(m=slider(-l,l,step_size =1,default =0)):

spherical_harmonic(l,m,theta ,phi).show()

You can also explore the graphs of the spherical harmonics using Sage. The
code below plots the squared magnitude (probability density) |Y`m|2 of the first
few spherical harmonics in three ways: using color on the unit sphere, as the
distance from the origin, and as the distance from the unit sphere.

cm=colormaps.hsv
theta ,phi=var(’theta ,phi’)
@interact
def _(l=slider(0,5, step_size =1)):

@interact
def _(m=slider(-l,l,default=0,step_size =1)):

sh=spherical_harmonic(l,m,theta ,phi)
max2=max(flatten ([[abs(spherical_harmonic(l,m,theta ,phi))^2

for phi in [2*p*pi/10 for p in
range (1)]]

for theta in [q*pi/10 for q in
range (11) ]]))

max2a=max(flatten ([[1+ abs(spherical_harmonic(l,m,theta ,phi))^2
for phi in [2*p*pi/10 for p in

range (1)]]
for theta in [q*pi/10 for q in

range (11) ]]))
def col(phi ,theta):

return
float(abs(spherical_harmonic(l,m,theta ,phi))^2/ max2)

sph1=spherical_plot3d (1,(phi ,0,2*pi),(theta ,0,pi),
plot_points =50,frame=False ,color =(col ,cm))

shp2=spherical_plot3d(abs(sh)^2/max2 ,(phi ,0,2*pi) ,(theta ,0,pi),
plot_points =50,frame=False ,color =(col ,cm))

shp3=spherical_plot3d (1+ abs(sh)^2/max2a ,(phi ,0,2*pi) ,(theta ,0,pi),
plot_points =50,frame=False ,color =(col ,cm))

shp=sph1.translate ((2,-2,0))+shp2+shp3.translate ((-2,2,0))
show(shp)

Here are the (magnitudes of the) real and imaginary parts of the spherical
harmonics, along with the overall magnitude.

cm=colormaps.hsv
theta ,phi=var(’theta ,phi’)
@interact
def _(l=slider(0,5, step_size =1)):

@interact
def _(m=slider(-l,l,default=0,step_size =1)):

sh=spherical_harmonic(l,m,theta ,phi)
mr=max(flatten ([[abs(real(spherical_harmonic(l,m,theta ,phi)))

for phi in [2*p*pi/10 for p in
range (11)]]

for theta in [q*pi/10 for q in
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range (11) ]]))
mi=max(flatten ([[abs(imag(spherical_harmonic(l,m,theta ,phi)))

for phi in [2*p*pi/10 for p in
range (11)]]

for theta in [q*pi/10 for q in
range (11) ]]))

mx=max(flatten ([[abs(spherical_harmonic(l,m,theta ,phi))
for phi in [2*p*pi/10 for p in

range (11)]]
for theta in [q*pi/10 for q in

range (11) ]]))
if mi==0:

mi=1
def col(phi ,theta):

return
float(abs(spherical_harmonic(l,m,theta ,phi))/mx)

sphr=spherical_plot3d(abs(real(sh))/mr ,(phi ,0,2*pi) ,(theta ,0,pi),
plot_points =50,frame=False ,color =(col ,cm))

shpi=spherical_plot3d(abs(imag(sh))/mi ,(phi ,0,2*pi) ,(theta ,0,pi),
plot_points =50,frame=False ,color =(col ,cm))

shpa=spherical_plot3d(abs(sh)/mx ,(phi ,0,2*pi) ,(theta ,0,pi),
plot_points =50,frame=False ,color =(col ,cm))

shp=sphr.translate ((2,-2,0))+shpi+shpa.translate ((-2,2,0))
show(shp)

Here are the signed values of the real and imaginary parts of the spherical
harmonics, along with the overall magnitude. (The sign is indicated by color
only, not by allowing the radius to become negative.)

cm=colormaps.hsv
theta ,phi=var(’theta ,phi’)
@interact
def _(l=slider(0,5, step_size =1)):

@interact
def _(m=slider(-l,l,default=0,step_size =1)):

sh=spherical_harmonic(l,m,theta ,phi)
mr=max(flatten ([[abs(real(spherical_harmonic(l,m,theta ,phi)))

for phi in [2*p*pi/10 for p in
range (11)]]

for theta in [q*pi/10 for q in
range (11) ]]))

mi=max(flatten ([[abs(imag(spherical_harmonic(l,m,theta ,phi)))
for phi in [2*p*pi/10 for p in

range (11)]]
for theta in [q*pi/10 for q in

range (11) ]]))
mx=max(flatten ([[abs(spherical_harmonic(l,m,theta ,phi))

for phi in [2*p*pi/10 for p in
range (11)]]

for theta in [q*pi/10 for q in
range (11) ]]))

if mi==0:
mi=1

def colr(phi ,theta):
return

float (1/2+ real(spherical_harmonic(l,m,theta ,phi))/mx/2)
def coli(phi ,theta):
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return
float (1/2+ imag(spherical_harmonic(l,m,theta ,phi))/mx/2)

def cola(phi ,theta):
return

float (1/2+ abs(spherical_harmonic(l,m,theta ,phi))/mx/2)
sphr=spherical_plot3d(abs(real(sh))/mr ,(phi ,0,2*pi) ,(theta ,0,pi),

plot_points =50,frame=False ,color =(colr ,cm))
shpi=spherical_plot3d(abs(imag(sh))/mi ,(phi ,0,2*pi) ,(theta ,0,pi),

plot_points =50,frame=False ,color =(coli ,cm))
shpa=spherical_plot3d(abs(sh)/mx ,(phi ,0,2*pi) ,(theta ,0,pi),

plot_points =50,frame=False ,color =(cola ,cm))
shp=sphr.translate ((2,-2,0))+shpi+shpa.translate ((-2,2,0))
show(shp)

Finally, here you can graph (using color only) the squared magnitude of an
arbitrary (complex!) linear combination of spherical harmonics, each entered
as “Y (`,m)”. (Use I for i, and submit your combination by pressing Enter.)

cm=colormaps.hsv
l,m,theta ,phi=var(’l,m,theta ,phi’)
Y(l,m)=spherical_harmonic(l,m,theta ,phi)
@interact
def _(YY=input_box (0,label="Sum␣=")):

def YYe(T,P):
return YY.subs(phi==P).subs(theta==T)

maxx=max(flatten ([[abs(YYe(q*pi/10,2*p*pi/10))^2
for p in range (11)] for q in

range (11)]))
if maxx ==0:

maxx=1
def col(P,T):

return float(abs(YYe(T,P))^2/ maxx)
YYg=spherical_plot3d (1,(phi ,0,2*pi),(theta ,0,pi),

plot_points =50,frame=False ,color =(col ,cm))
show(YYg)



Chapter 20

Fourier Series

20.1 Fourier Series Motivation
UNDER DEVELOPMENT--Add the example of the Fourier series for a pen-
dulum that is NOT in the small angle approximation. Change the figure
below.

If a room full of students is asked to sketch an example of a periodic function,
at least half will draw a sine or cosine. This is a great choice in the sense that
sines and cosines are particularly simple and easy to deal with algebraically.
(Even easier are complex exponentials – more about this later.) However, there
are many other periodic functions that are not so simple. These functions
can represent oscillatory phenomena that occur in many places in nature.
Fortunately for us, it turns out that we can express all periodic phenomena
as (possibly infinite) sums of sines and cosines. These sums are called Fourier
Series.

Fourier Series are often used to approximate a function by giving the first
few terms. In Figure 20.1.1 you can see how well the first few terms (shown in
purple) approximate a periodic step function (shown in blue), with period L = 1.
You can also use this applet to approximate another function of your choice
by entering it in the box labeled “Function”. (The applet will automatically
convert your function into a periodic function with period 1.)

Figure 20.1.1 The first few partial sums in the Fourier series for a step function.
Move the slider to increase the number of terms in the sum.

210
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20.2 Fourier Series Overview
The basic idea of a Fourier series is that any (piecewise smooth) periodic
function can be accurately represented by a (possibly infinite) sum of sine
and cosine functions whose period is an integer multiple of the period of the
function. The formula for the Fourier series for the f(θ) with period 2π (i.e.
f(θ + 2π) = f(θ)) is

f(θ) = 1
2a0 +

∞∑
n=1

an cosnθ +
∞∑
n=1

bn sinnθ (20.2.1)

The extra factor of 1
2 in the a0 term is a convention. Note, there is no b0 term

since sin 0 is identically zero.
The coefficients an and bn are uniquely determined by f(θ). The formulas

are

an = 1
π

∫ 2π

0
cos(nx) f(x) dx

bn = 1
π

∫ 2π

0
sin(nx) f(x) dx

The derivation of the coefficients for a given f(θ) can be found in Section 20.4.
The derivation is straightforward and completely analogous to finding coeffi-
cients for vectors that are arrows in space. It is also analogous to many such
calculations that you will do with other, more abstract vector spaces, so it is
well worth your time to work through. The geometric idea behind the formulas
for the coefficients can be found in Section 14.5, Section 14.6, an Section 14.7.

In applied settings, you will want formulas for Fourier series involving
variables with dimensions. Alternative versions can be found in Section 20.5.
Most often, a finite number of terms in the Fourier series are used to approximate
a periodic function. You can explore how this works in Section 20.7, Section 20.8,
an Section 20.10. In cases with high symmetry, you may be able to simplify
your calculations by exploiting the symmetries of the harmonic functions, see
Section 20.11.

20.3 Fourier Basis Functions
Before we jump into the details of Fourier series, use the applet below to remind
yourself of how the graphs of sin (mx) and cos (mx) depend on the parameter
m.
Activity 20.3.1 Visualizing the Fourier Basis Functions. Use the applet
below to explore the basis functions. One at a time, set each slider to 1, look at
the resulting function, and return that slider to 0. Make a note of any patterns
that you see.
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Figure 20.3.1 An applet that allows you to explore the shapes of the Fourier
basis functions.

Answer. You should have noticed the following features:

1. All of the functions are sinusoidal, that is, cos(mx) or sin(mx) for integer
m.

2. The coefficient of the constant term (cos(mx) for m = 0) is 1
2a0.

3. The coefficients am correspond to cosine functions.

4. The coefficients bm correspond to sine functions.

5. The subscript m on the coefficients am and bm corresponds to the value
m in cos(mx) or sin(mx).

20.4 Derivation of Fourier Coefficients
We are now ready to find formulas for the Fourier coefficients an and bn. Using
the idea outlined at the start of Section 14.7, the coefficient of each basis
element can be obtained from the inner product, i.e. the analogue of the “dot
product” of that basis element with the original “vector”.

Let’s start with the an coefficients for n 6= 0. The corresponding basis
elements are cos (nx), so we compute

cos (nx) · f(x)

=
∫ 2π

0
cos (nx) f(x) dx

=
∫ 2π

0
cos (nx)

[
1
2a0 +

∞∑
m=1

am cos (mx)

+
∞∑
m=1

bm sin (mx)
]
dx

= 1
2a0
��

��
�
��*0∫ 2π

0
cos (nx) dx

+
∞∑
m=1

am
��

���
���

���
�:πδnm∫ 2π

0
cos (nx) cos (mx) dx
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+
∞∑
m=1

bm
���

���
���

���:
0∫ 2π

0
cos (nx) sin (mx) dx

=
∞∑
m=1

amπδmn

= πan (20.4.1)

where we see the squared norm of the basis function appear in the next-to-last
line. In conclusion,

an = 1
π

∫ 2π

0
cos (nx) f(x) dx. (20.4.2)

Activity 20.4.1 Finding Fourier Coefficients. Use similar reasoning to
obtain the formulas

a0 = 1
π

∫ 2π

0
cos (0x) f(x) dx = 1

π

∫ 2π

0
f(x) dx (20.4.3)

and
bn = 1

π

∫ 2π

0
sin (nx) f(x) dx (20.4.4)

Solution. For the a0 term, the corresponding basis element is just the constant
function, so we compute

cos (0x) · f(x)

=
∫ 2π

0
���

�:1
cos (0x)f(x) dx

=
∫ 2π

0
1
[

1
2a0 +

∞∑
m=1

am cos (mx)

+
∞∑
m=1

bm sin (mx)
]
dx

= 1
2a0

∫ 2π

0
dx

+
∞∑
m=1

am���
���

��:0∫ 2π

0
cos (mx) dx

+
∞∑
m=1

bm���
���

��:0∫ 2π

0
sin (mx) dx

= πa0 (20.4.5)

In conclusion,
1
2a0 = 1

2π

∫ 2π

0
f(x) dx. (20.4.6)

Thus, the term a0/2 in the series represents the average value of f (on the given
interval).

We leave the bn calculation for the reader.
The conventional factor of 1

2 in the definition of a0 can now be justified
by noting that the factor preceding the integral in (20.4.3) is the same as the
factors preceding the integrals in (20.4.2) and (20.4.4).
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20.5 Alternative Forms of Fourier Series
There are many different forms of the Fourier series and therefore different
formulas for the Fourier series coefficients, depending on the physical context.
We are using the names an, bn, and cn as the names for the coefficients in every
case, below, but of course the values of these coefficients and the formulas for
finding them are slightly different in each case. Be careful to pair the formula for
the coefficient with the form of the Fourier series that you are using, especially
if you are pulling formulas from multiple sources. See the activity with hints
and example solution below.

The factors that will help you choose the correct form of the Fourier series
are:

• The zeros of the trig functions sine and cosine occur when the argument
is an integer multiple of 2π, so you will see versions of the formulas both
without and with factors of 2π explicitly in the argument:

f(θ) = a0

2 +
∞∑
n=1

an cosnθ +
∞∑
n=1

bn sinnθ (20.5.1)

or

f(θ) = a0

2 +
∞∑
n=1

an cos 2πnθ +
∞∑
n=1

bn sin 2πnθ (20.5.2)

In the first case, the variable θ runs from 0 to 2π and in the second case,
it runs from 0 to 1.

• The argument of special functions like sine, cosine, and exponential must
always be dimensionless (see Section 13.8), so if the independent variable
has dimensions, it must always be divided by some constant with the same
dimensions. The most typical examples are: the independent variable is a
(rectangular) spatial dimension like x, in which case it will appear in the
formulas divided by a constant length, for example L, which represents
the wavelength of the phenomenon

f(x) = a0

2 +
∞∑
n=1

an cos
(

2πnx
L

)
+
∞∑
n=1

bn sin
(

2πnx
L

)
(20.5.3)

or the independent variable is time t, in which case it will appear in the
formulas divided by a constant time, for example T , which represents the
period of the phenomenon.

f(t) = a0

2 +
∞∑
n=1

an cos
(

2πnt
T

)
+
∞∑
n=1

bn sin
(

2πnt
T

)
(20.5.4)

• The integration in the formulas must always be over the period of the
phenomenon, e.g. L or T in the examples immediately above.

• Using Euler’s formula (see Section 2.6), sines and cosines can always be
rewritten as (complex) exponentials. Therefore, there is an exponential
form of the Fourier series.

f(θ) =
∞∑

n=−∞
cn e

inθ (20.5.5)
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A big advantage of the exponential form is that it is only necessary to
use a single sum, although the sum begins at n = −∞ instead of 0 or 1.
The trade-off is that you are now in complex-number land. For a real-
valued function, the constants cn and c−n must be complex conjugates
of each other. (Why?) This exponential form can also come with and
without various dimensions and with or without explicit factors of 2π in
the argument, as in the bullets above.

Activity 20.5.1 Formulas for the coefficients of different forms of
Fourier series. Starting from the formulas (20.4.2) and (20.4.4) for the
coefficients for am and bm, and using any method you know for changing
variables in integrals, find formulas for the coefficients for each of the other
forms of the Fourier series listed above.
Hint. Don’t forget to change the limits in the integrals appropriately. Also,
notice that the overall constant factors change in each case.
Answer. As an example, the formulas for the coefficients corresponding to
the form (20.5.3) involving the spatial variable x are:

an = 2
L

∫ L

0
cos
(

2πnx
L

)
f(x) dx (20.5.6)

bn = 2
L

∫ L

0
sin
(

2πnx
L

)
f(x) dx (20.5.7)

20.6 Fourier Series Example
Let’s consider an example. Suppose f(x) describes a square wave of height C,
so that

f(x) = C Θ
(
L

2 − x
)

=
{
C (0 ≤ x < L

2 )
0 (L2 < x ≤ L)

(20.6.1)

where the step function Θ is defined in Section 17.3 (The value of f at the
single point x = L/2 doesn’t matter).

According to the previous sections, we have

f(x) = 1
2a0 +

∞∑
n=1

an cos
(

2πnx
L

)
+
∞∑
n=1

bn sin
(

2πnx
L

)
(20.6.2)

where

a0 = 2
L

∫ L
2

0
C dx = C, (20.6.3)

an = 2
L

∫ L
2

0
cos
(

2πnx
L

)
C dx = 0, (20.6.4)

bn = 2
L

∫ L
2

0
sin
(

2πnx
L

)
C dx =

{
2C
πn (n odd)
0 (n even)

(20.6.5)

Putting this all together,

f(x) = C

1 +
∞∑
n=1
n odd

2
πn

sin
(

2πnx
L

) . (20.6.6)



CHAPTER 20. FOURIER SERIES 216

It is instructive to plot the first few terms of this Fourier series and watch the
approximation improve as more terms are included, as shown in Figure 20.6.1.

Figure 20.6.1 The first few partial sums in the Fourier series for a step
function.

20.7 Fourier Series: Worked Example
Make sure to complete the activity in Section 20.3 before attempting this one.

In this section, we will use the formulas in Section 20.2 to work out an
example, the Fourier series for the function f(x) = − 1

2 + sin(x) sin(2x). Then
you will plot the individual terms in the Fourier series and their partials sums
using an applet.

The formula for the first coefficient a0 is given in (20.4.3). You can use the
Sage code below to calculate the value of this integral.

n=0
f= -0.5+sin(x)*sin(2*x)
1/pi*integrate(f*cos(n*x),x,0,2*pi)

Using the applet in Figure 20.7.1, set the a0/2 slider to correspond to the
value you just calcuated. Compare your approximate Fourier series, containing
just one term (shown in green), to the actual function (shown in blue).
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Figure 20.7.1 An applet for manipulating the individual Fourier coefficients.
You should notice that 1

2a0 is just the average value of the function. Because
the given function is symmetric vertically, this zeroth-order approximation
(green) runs across the middle of the graph of the function (blue). In general,
the integral in (20.4.3) defines what you mean by “the middle”.

Now you can alter the Sage code above to compute the other coefficients,
using (20.4.2) and (20.4.4) in Section 20.4. After each calculation, move the
corresponding slider to the value you obtain, and compare the approximation
to the given function.

If you move the sliders one by one, resetting the others to zero, you will see
how much each individual term contributes to the Fourier series.

If you don’t reset the other sliders, but instead combine the contributions
from each slider, the applet plots the sum of the corresponding terms (in green),
representing an approximation to the actual function (in blue). In the given
example, you should obtain an exact match when you include all of the terms
with n = 0, 1, 2, 3 (most of which will be 0). In general, there are an infinite
number of nonzero terms in the Fourier series; your approximation will get
better and better as you include more terms.

20.8 Fourier Series: Exploration
Make sure to complete the activity in Section 20.3 before attempting this one.

Activity 20.8.1 Guessing the Fourier Coefficients. In Figure 20.8.1
below, use the sliders to match the given function (shown in blue) exactly.
Use only graphical reasoning. Hint: Only three of the sliders need to be set to
nonzero values.

When you are done, make a note of any relationship you see between the
values of the coefficients and the shape of the graph.
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Figure 20.8.1 Use the applet to set the individual Fourier coefficients to try
to match the given function.

Hint. Use the Sage code below to calculate the coefficients, if you are having
trouble guessing.
Activity 20.8.2 Comparing an exact calculation to your guess. Refer
to Section 20.2 to find the formulas for the coefficients in a Fourier series.
Use the Sage code below to calculate the coefficients for the function f(x) =
− 1

2 + sin(x) sin(2x) used in the previous activity. Check that your calculated
coefficients agree with your earlier guess.

n=0
f= -0.5+sin(x)*sin(2*x)
1/pi*integrate(f*cos(n*x),x,0,2*pi)

Hint. The Sage code calculates a0. You will need to make minor changes in
order to calculate the remaining coefficients.

20.9 Fourier Series: Small Group Activity
Make sure to complete the activity in Section 20.3 before attempting this one.

Activity 20.9.1 Calculating Fourier Coefficients. Refer to Section 20.2
to find the formulas for the coefficients in a Fourier series. Use the Sage code
below to calculate the coefficients an and bn for n = 0, 1, 2, 3 for the function
− 1

2 + sin(x) sin(2x).

n=0
f= -0.5+sin(x)*sin(2*x)
1/pi*integrate(f*cos(n*x),x,0,2*pi)

The applet in Figure 20.9.1 shows the function − 1
2 + sin(x) sin(2x) (in blue).

As you move the sliders, the corresponding Fourier series is also shown (in green).
Set the sliders to the values that you calculated. Write as many statements as
you can about the relationships between the values of the coefficients and the
shape of the graph.
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Figure 20.9.1 An applet for manipulating the individual Fourier coefficients.

Solution. (Add wrap-up.)

20.10 The Gibbs Phenomenon
Generally, it is possible to approximate a reasonably smooth function quite well,
by keeping enough terms in the Fourier series. However, in the case of a function
that has (a finite number of) discontinuities, the Fourier approximation of the
function will always “overshoot” the discontinuity. This overshoot phenomenon
gets sharper and sharper, i.e. bigger amplitude over a smaller domain, as the
number of terms in the approximation is increased.

An example of the Gibbs phenomenon is shown in Figure 20.10.1.

Figure 20.10.1 The Gibbs phenomenon for the Fourier series of a step function.
Move the slider to increase the number of terms in the approximation.

20.11 Symmetries
If the function that you are trying to find a Fourier series representation for
has a particular symmetry, e.g. if it is symmetric or antisymmetric around the
center of the interval for which its defined, then only those basis functions that
have the same symmetry will have nonzero coefficients.

FIXME: Add graphs and examples.
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Fourier Transforms

21.1 Gaussians
A Gaussian is a function of the form

f(x) = Ne−
(x−x0)2

2σ2 . (21.1.1)
Sensemaking 21.1.1 Derivatives of the Gaussian. What do the first and
second derivatives of the delta function tell you about the shape of the graph?
Hint. The sign of the first derivative tells you whether the function is increas-
ing (positive derivative) or decreasing (negative derivative). The sign of the
second derivative tells you whether the function is concave up (positive second
derivative) or concave down (negative second derivative).

The graph below shows the role of the parameters N , x0, and σ on the
shape of the graph.

Figure 21.1.1 The graph of a Gaussian with parameters N , x0, and σ.

Activity 21.1.2 The relationship between the algebraic form of a
Gaussian and its shape.. EXPLAIN the relationship between the algebraic
form of the Gaussian function and how the parameters N , x0, and σ control
the shape of the graph.
Answer.
• N is an overall multiplicative factor, so increasing (or decreasing) N

increases (or decreases) the overall amplitude (height) of the function.

• x0 appears in the function in the form x− x0, i.e. it appears as a shift
in the value of the independent variable, so increasing (or decreasing) x0
results in a shift of the graph to the right (or left).

220
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• σ occurs in the denominator of a fraction, with the shifted independent
variable x− x0 in the numerator. When σ increases (or decreases), the
value of the fraction decreases (or increases). This fraction squared
appears in anegative exponent, so as the value of the fraction decreases
(or increases), the value of the exponential increases (or decreases) which
makes the Gaussian wider (or narrower).

21.2 Normalization of the Gaussian
In Section 21.1 we gave a general formula for a Gaussian function with three
real parameters. When Gaussian’s are used in probability theory, it is essential
that the integral of the Gaussian for all x is equal to one, i.e. the area under
the graph of the Gaussian is equal to one, so that the total probability of
anything happening is one. We can use this condition to find the value of the
normalization parameter N in terms of the other two parameters.

Of course, you can use computer algebra to find the value of the integral
and/or just look it up online or in a table of integrals, i.e.∫ ∞

−∞
e−x

2
dx =

√
π (21.2.1)

and use an appropriate substitution. But there is a sweet trick to finding the
integral of a Gaussian that is worth knowing.

First, give the name I to the integral you are trying to find

I =
∫ ∞
−∞

Ne−
(x−x0)2

2σ2 dx (21.2.2)

Next, find the value of the square of this integral, i.e. this integral times
itself. Don’t forget to name the ‘‘dummy’’ variables of integration with different
names. In this case, we will call the variables x and y, to suggest coordinates
in the plane.

I2 =
(∫ ∞
−∞

Ne−
(x−x0)2

2σ2 dx

)(∫ ∞
−∞

Ne−
(y−y0)2

2σ2 dy

)
(21.2.3)

=
∫ ∞
−∞

∫ ∞
−∞

N2e−
(x+x0)2+(y−y0)2

2σ2 dx dy (21.2.4)

Finally, taking advantage of the fact that the integration (abstractly) covers
the whole two-dimensional plane, we change to polar coordinates, centered at
the point (x0, yo), using the substitutions

(x− x0)2 + (y − y0)2 = r2 (21.2.5)
dx dy = r dr dφ (21.2.6)

to obtain

I2 =
(∫ 2π

0

(∫ ∞
0

N2e−
r2

2σ2 r dr

)
dφ

)
(21.2.7)

= 2πσ2N2 (21.2.8)

(Note the limits of integration!)
In the final line, the new factor of r in the integrand made it possible to do

the integral with the substitution given by u = r2

2σ2 (Details left to the reader.
See Section 6.7 for an explanation of substitution in integrals.)
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If we want to normalize the function for probability applications, the value
of this integral should be equal to one, so we would choose

N = 1√
2π σ

(21.2.9)

and the formula for the normalized Gaussian is

f(x) = 1√
2π σ

e−
(x−x0)2

2σ2 (21.2.10)

In section Section 21.1, you can explore how the parameters N and σ
separately affect the shape of the graph of a Gaussian. The normalization
condition (21.2.9), relates these two parameters. As a Gaussian gets taller, it
must also get narrower in just the right way to keep the area under the curve
the same.

21.3 Definition of the Fourier Transform
Consider the (square integrable) function f(x); its Fourier transform is defined
by:

F(f) = f̃(k) = 1√
2π

∫ ∞
−∞

e−ikx f(x) dx (21.3.1)

The inverse of the Fourier transform is given by:

F−1(f̃) = f(x) = 1√
2π

∫ ∞
−∞

f̃(k) eikx dk (21.3.2)

To show that the inverse Fourier transform is indeed the inverse operation,
start with the right-hand-side of the inverse Fourier transform and insert the
definition of the Fourier transform

1√
2π

∫ ∞
−∞

f̃(k) eikx dk = 1√
2π

∫ ∞
−∞

[
1√
2π

∫ ∞
−∞

f(x′) e−ikx
′
dx′
]
eikx dk

=
∫ ∞
−∞

f(x′)
[

1
2π

∫ ∞
−∞

eik(x−x′) dk

]
dx′

=
∫ ∞
−∞

f(x′)δ(x− x′) dx′

= f(x) (21.3.3)

where in the second to the last line, we have used the integral representation of
the delta function, see Section 17.11, to evaluate the expression in the square
brackets.

Conventions.

• We strongly suggest the convention of putting the exponential to the left
of the function in the integrand of the Fourier transform (and to the right
for the inverse Fourier transform) to highlight the relationship between
the Fourier Transform and the quantum mechanics notion of finding the
projection of a quantum wavefunction f(x) onto a plane wave (Notice the
complex conjugate of the plane wave that turns the ket into a bra).

• We always use the convention of putting a factor of 1√
2π into the definitions

of both the Fourier Transform and its inverse (see below) to make the
operations symmetric in this way. This convention is NOT universal; use
caution when using other resources.
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21.4 Fourier Transform of the Delta Function
The easiest and one of the most important examples of a Fourier Transform is
the delta function!
Activity 21.4.1 The Fourier Transform of a Delta Function. Show
that the Fourier Transform of the delta function f(x) = δ(x− x0) is a constant
phase that depends on x0, where the peak of the delta function is.
Answer.

δ̃x0(k) = 1√
2π

e−ikx0 (21.4.1)

Solution.

δ̃x0(k) = 1√
2π

∫ ∞
−∞

e−ikxδ(x− x0) dx (21.4.2)

= 1√
2π

e−ikx0 (21.4.3)

Now, we can use the inverse Fourier transform to derive the important
exponential representation of the delta function, (17.11.2).

Activity 21.4.2 The inverse Fourier Transform of a Delta Function.
Use the inverse Fourier Transform of the delta function to derive the exponential
representation of the delta function.

δ(x− x0) = 1
2π

∫ ∞
−∞

eik(x−x0) dk (21.4.4)

Solution. We just showed that the Fourier transform of the delta function is
a constant phase. This means that the inverse Fourier transform of the phase
is a delta function. So, just write down this statement:

δ(x− x0) = F−1
(

1√
2π

e−ikx0

)
(21.4.5)

= 1√
2π

∫ ∞
−∞

(
1√
2π
e−ikx0

)
eikx dk (21.4.6)

= 1
2π

∫ ∞
−∞

eik(x−x0) dk (21.4.7)

21.5 Properties of the Fourier Transform
In this section, you will find activities that encourage you to prove two important
properties of the Fourier transform. These properties are relatively easy to
prove. Each activity has a hint if you get stuck and the full solution if you are
short on time.
Activity 21.5.1 The Fourier Transform of a Shifted Function. Show
that the Fourier transform of a function that is shifted by an amount x0 is
related to the Fourier transform of the original function by a constant phase
related to the amount of the shift, i.e.

F(f(x− x0)) = e−ikx0 F(f(x)). (21.5.1)

Hint. Use the substitution y = x−x0 in the definition of the Fourier transform.
Solution. Plug f(x− x0) into the definition of the inverse Fourier transform
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and use the substitution y = x− x0, dy = dx. Notice that the (infinite) limits
of integration don’t change for this substitution.

F(f(x− x0) = f̃x0(k) (21.5.2)

= 1√
2π

∫ ∞
−∞

e−ikx f(x− x0) dx (21.5.3)

= 1√
2π

∫ ∞
−∞

e−ik(y+x0) f(y) dy (21.5.4)

= e−ikx0

(
1√
2π

∫ ∞
−∞

e−iky f(y) dy
)

(21.5.5)

= e−ikx0 f̃(k) (21.5.6)
= e−ikx0F(f) (21.5.7)

Activity 21.5.2 The Fourier Transform of a Derivative. Show that the
Fourier Transform of the derivative of a function is simply related to the Fourier
transform of the original function, as given by the following formula

F
(
d

dx
f(x)

)
= f̃(k) ik. (21.5.8)

Hint. Take the derivative of both sides of the definition of the inverse Fourier
transform with respect to x and simplify. Interpret your simplified expression
as the inverse Fourier transform of something.
Solution. The definition of the inverse Fourier transform is given in (21.3.2).
Take the derivative of both sides of this equation with respect to x and simplify.
Then interpret the expression as an inverse Fourier transform, again using
(21.3.2)

f(x) = 1√
2π

∫ ∞
−∞

f̃(k) eikx dk (21.5.9)

d

dx
f(x) = d

dx

[
1√
2π

∫ ∞
−∞

f̃(k) eikx dk
]

(21.5.10)

= 1√
2π

∫ ∞
−∞

f̃(k)
(
d

dx
eikx

)
dk (21.5.11)

= 1√
2π

∫ ∞
−∞

f̃(k)
(
ik eikx

)
dk (21.5.12)

= 1√
2π

∫ ∞
−∞

(
f̃(k) ik

)
eikx dk (21.5.13)

= F−1 (f̃(k) ik
)

(21.5.14)

⇒ F
(
d

dx
f(x)

)
= f̃(k) ik (21.5.15)

21.6 Examples of Fourier Transforms
This section asks you to find the Fourier transform of a cosine function and
a Gaussian. Hints and answers are provided, but the details are left for the
reader.
Activity 21.6.1 The Fourier Transform of the Cosine. Find the Fourier
transform of the cosine function f(x) = cos kx.
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Hint. Hint: You must integrate a combination of an exponential and a cosine.
It is ALWAYS easier to integrate exponentials, so use the exponential form of
the cosine function, (2.6.3).
Answer.

F(cos kx) = f̃(k′) (21.6.1)
= π (δ(k − k′) + δ(k + k′)) (21.6.2)

Activity 21.6.2 The Fourier Transform of a Gaussian. Find the Fourier
transform of the normalized Gaussian (21.2.10)

f(x) = 1√
2π σ

e−
(x−x0)2

2σ2 (21.6.3)

Hint. Complete the square in the exponential, see Section A.1, and use the
formula for the integral of a Gaussian, see (21.2.1).
Answer.

F
(

1√
2π σ

e−
(x−x0)2

2σ2

)
= f̃(k) (21.6.4)

= 1√
2π

e−
k2σ2

2 e−ikx0 (21.6.5)

Notice that the Fourier transform of a Gaussian is also a Gaussian, but now the
factor of σ2 is in the numerator of the exponential instead of the denominator.
How are the shapes of the two Gaussian’s related to each other?

21.7 Using Technology to Calculate and Graph
Fourier Transforms

The code below will allow you to calculate and plot the Fourier transform of
an input function of your choice. The default input function is the Gaussian
f(x) = e−x

2 .

pretty_print_default(True)
k=var(’k’)
f=exp(-x^2)
F=1/ sqrt (2*pi)*integrate(f*exp(-i*k*x),x,-infinity ,infinity)
F

plot(F,(k,-5,5))

You might also want to try the Fourier transform calculator at Wolfram
Alpha.

21.8 Fourier Uncertainties

21.9 Wave Packets

https://www.wolframalpha.com/input/?i=Fourier+transform+calculator
https://www.wolframalpha.com/input/?i=Fourier+transform+calculator


Chapter 22

Waves

22.1 Sums of Harmonic Functions
Harmonic (sinusoidal) functions have many remarkable properties. It is almost
always easiest to prove these properties by using Euler’s formula to turn the
harmonic functions into exponentials, see (2.6.1).

In this section, we explore the effects of adding two harmonic functions.
The results here are very useful when you want to describe waves with different
algebraic representations. Figure 22.1.1 below shows the graph of a cosφ+b sinφ,
subject to the constraint that a2 + b2 = 1 while Figure 22.1.2 shows the effect
of allowing a and b to vary independently.

Figure 22.1.1 The graph of a cosφ+ b sinφ.

Figure 22.1.2 The graph of a cosφ+ b sinφ.

Activity 22.1.1 The sum of two harmonic functions. In the animations
above, it looks as if the sum of two harmonic functions is another harmonic
function. Show algebraically that this is true, i.e. show that a cosφ+ b sinφ =
r cos (φ− δ). Furthermore, find expressions for r and δ in terms of a and b.

226
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Hint. Use Euler’s formula (2.6.1)
Answer. r =

√
a2 + b2 and tan δ = b

a .



Chapter 23

Classical Mechanics of Orbits

23.1 Introduction to the Classical Central Force
Problem

In this chapter, we will examine a mathematically tractable and physically
useful problem - that of two bodies interacting with each other through a central
force.
Definition 23.1.1 Central Force. A central force is a force between two
objects that has two characteristics:

1. A central force depends only on the separation distance between the two
bodies,

2. A central force points along the line connecting the two bodies.

♦
The most common examples of this type of force are those that have 1

r2

behavior, specifically the Newtonian gravitational force between two point (or
spherically symmetric) masses and the Coulomb force between two point (or
spherically symmetric) electric charges. Clearly both of these examples are
idealizations - neither ideal point masses or charges nor perfectly spherical mass
or charge distributions exist in nature, except perhaps for elementary particles
such as electrons. However, deviations from ideal behavior are often small and
can be neglected to within a reasonable approximation. (Power series to the
rescue!) Also, notice the difference in length scale: the archetypal gravitational
example is planetary motion - at astronomical length scales; the archetypal
Coulomb example is the hydrogen atom - at atomic length scales.

Our ultimate goal is to solve the equations of motion for two masses m1
and m2 subject to a central force acting between them. When you considered
this problem in introductory physics, you assumed that one of the masses was
so large that it effectively remained at rest while all of the motion belonged
to the other object. This assumption works fairly well for the Earth orbiting
around the Sun or for a satellite orbiting around the Earth, but in general we
are going to have to solve for the motion of both objects.

The two solutions to the central force problem - classical behavior exemplified
by the gravitational interaction (addressed in this chapter) and quantum
behavior exemplified by the Coulomb interaction (addressed in Chapter 24) -
are quite different from each other. By studying these two cases together in
parallel, we will be able to explore the strong similarities and the important
differences between classical and quantum physics.

228
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Two of the unifying themes of this topic are the conservation laws:

1. Conservation of Energy

2. Conservation of Angular Momentum

The classical and quantum systems we will explore both have versions of these
conservation laws, but they come up in the mathematical formalisms in different
ways.

In the classical mechanics case, we will obtain the equations of motion in
three equivalent ways,

1. using Newton’s second law,

2. using Lagrangian mechanics,

3. using energy conservation.

so that you will be able to compare and contrast the methods. The Newto-
nian approach is the most straightforward and naive, but it suggests changes
of coordinates that inform the other methods. The Lagrangian and energy
conservation approaches are slightly more sophisticated in that they exploit
more of the symmetries from the beginning.

We will also consider forces that depend on the distance between the two
bodies in ways other than 1

r2 and explore the kinds of motion they produce.

23.2 Systems of Particles
Consider a system of n different masses mi, interacting with each other and
being acted on by external forces. We can write Newton’s second law for the
positions ~ri of each of these masses with respect to a fixed origin O, thereby
obtaining a system of equations governing the motion of the masses.

m1
d2~r1

dt2
= ~F 1 + 0 + ~f12 + ~f13 + ...+ ~f1n

m2
d2~r2

dt2
= ~F 2 + ~f21 + 0 + ~f23 + ...+ ~f2n (23.2.1)

...

mn
d2~rn
dt2

= ~F n + ~fn1 + ~fn2 + ...+ ~fn(n−1) + 0

Here, we have chosen the notation ~F i for the net external forces acting on
mass mi and ~f ij for the internal force of mass mj acting on mi.

In general, each internal force ~f ij will depend on the positions of the
particles ~ri and ~rj in some complicated way, making (23.2.1) a set of coupled
differential equations. To solve the system (23.2.1), we first need to decouple
the differential equations, i.e. find an equivalent set of differential equations in
which each equation contains only one variable.

The weak form of Newton’s third law states that the force ~f12 of m2 on m1
is equal and opposite to the force ~f21 of m1 on m2. We see that each internal
force appears twice in the system of equations (23.2.1), once with a positive
sign and once with a negative sign. Therefore, if we add all of the equations in
together, the internal forces will all cancel, leaving:

n∑
i=1

mi
d2~ri
dt2

=
n∑
i=1

~F i (23.2.2)
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Notice how surprising equation (23.2.2) is. The right-hand side directs us
to add up all of the external forces, each of which acts on a different mass;
something you were taught never to do in introductory physics. The left-hand
side directs us to add up (the second derivatives of) n “weighted” position
vectors pointing from the origin, each to a different mass.

We can simplify the left-hand side of (23.2.2) if we multiply and divide by
the total mass M = m1 +m2 + ...+mn and use the linearity of differentiation
to “factor out” the derivative operator:

n∑
i=1

mi
d2~ri
dt2

= M

n∑
i=1

mi

M

d2~ri
dt2

= M
d2

dt2

(
n∑
i=1

mi

M
~ri

)
(23.2.3)

= M
d2 ~Rcm

dt2

Definition 23.2.1 Position of the Center of Mass. We recognize (or
define) the quantity in the parentheses on the right-hand side of (23.2.3) as
the position vector ~Rcm from the origin to the center of mass of the
system of particles

~Rcm =
n∑
i=1

mi

M
~ri. (23.2.4)

♦
With these simplifications, (23.2.2) becomes:

M
d2 ~Rcm

dt2
=

n∑
i=1

~F i (23.2.5)

which has the form of Newton’s 2nd Law for a fictitious particle with mass M
sitting at the center of mass of the system of particles and acted on by all of
the external forces from the original system.

Definition 23.2.2 Momentum of the Center of Mass. We can define
the momentum of the center of mass as the total mass times the time derivative
of the position of the center of mass:

~P cm = M
d~Rcm

dt
(23.2.6)

♦
If there are no external forces acting, then the acceleration of the center

of mass is zero and the momentum of the center of mass is constant in time
(conserved)

M
d2 ~Rcm

dt2
= d~P cm

dt
= 0 (23.2.7)

Notice that the entire discussion above applies even if all of the internal
forces are zero (~f ij = 0), i.e. none of the particles have any way of knowing
that the others are even present. Such particles are called non-interacting.
The position of the center of mass of the system will still move according to
(23.2.5).
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23.3 Reduced Mass
So far, we have found one decoupled equation to replace (23.2.1). What about
the other n − 1 equations? It turns out that, in general, there is no way to
decouple and solve the other equations. Physicists often say, “The n-body
problem can not be solved in general.” Whenever you are stuck trying to solve
a general problem, it often pays to start with simpler examples to build up
your intuition. We will make two simplifying assumptions.

1. Assume that there are no external forces acting.

2. Assume that there are only two masses.

The system of equations (23.2.1) reduces to

m1
d2~r1

dt2
= −~f21

m2
d2~r2

dt2
= +~f21 (23.3.1)

Figure 23.3.1 The position vectors ~r1 and ~r2 for masses m1 and m2 and the
displacement vector ~r = ~r2 − ~r1 between them.

Figure 23.3.2 The position vectors ~r1 and ~r2 for masses m1 and m2 and the
displacement vector ~r = ~r2 − ~r1 between them.

Figure 23.3.1 shows the basic geometry of our problem. ~r1 and ~r2 are
the position vectors of the two masses measured with respect to an arbitrary
coordinate origin O. We call the displacement between the two masses ~r, the
magnitude of this displacement r, and the direction r̂. These quantities can be
found from ~r1 and ~r2 by

~r = ~r2 − ~r1 (23.3.2)
r = |~r| = |~r2 − ~r1| (23.3.3)
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r̂ = ~r

r
. (23.3.4)

Because we added the two equations of motion to find the equation of motion
for the center-of-mass, we are led now to consider subtracting the equations
so as to get ~r = ~r2 − ~r1. We see that before we subtract, we should multiply
the first equation in (23.3.1) by m2 and the second equation by m1 so that
the factors in front of the second derivative are the same. Subtracting the first
equation from the second and regrouping, we obtain:

m1m2
d2

dt2
(~r2 − ~r1) = m1m2

d2

dt2
(~r) (23.3.5)

= (m1 +m2)~f21 (23.3.6)

or rearranging:
m1m2

m1 +m2

d2~r

dt2
= ~f21 (23.3.7)

Definition 23.3.3 Reduced Mass. The combination of masses

µ = m1m2

m1 +m2
(23.3.8)

is called the reduced mass. ♦
Plugging in µ for the reduced mass, (23.3.7) becomes

µ
d2~r

dt2
= ~f21. (23.3.9)

This equation has the same form as Newton’s law for a single fictitious mass
µ, with position vector ~r, moving subject to the force ~f21. For the rest of
this chapter, when we will talk about “the mass”, we will mean this fictitious
particle subject to equation (23.3.9).

Note that to solve the original two mass problem we started with, we will
need to transform the solutions for ~r back to ~r1 and ~r2.

Activity 23.3.1 Undo Formulas for Center of Mass (Algebra). Find
the positions of the two masses in terms of the position of the center of mass
and the relative position, i.e. solve for:

~r1 =
~r2 =

Hint. The system of equations (23.2.4) and (23.3.2) is linear, i.e. each variable
is to the first power, even though the variables are vectors. In this case, you
can use all of the methods you learned for solving systems of equations while
keeping the variables vector valued, i.e. you can safely ignore the fact that the
~rs are vectors while you are doing the algebra as long as you don’t divide by a
vector.
Activity 23.3.2 Undo Formulas for Center of Mass (Geometry). The
figure below shows the position vector ~r and the orbit of a “fictitious” reduced
mass µ.
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Figure 23.3.4 The position vectors for µ.

1. Suppose m1 = m2, sketch the position vectors and orbits for m1 and m2
corresponding to ~r. Describe a common physics example of central force
motion for which m1 = m2.

2. Repeat for m2 > m1, where the mass difference is neither very large nor
very small.

Hint. Think about what you expect in the limiting case m2 >> m1.

23.4 Central Forces
In the introduction Section 23.1, we defined a central force as satisfying two
characteristics. We can now write turn these descriptions of the characteristics
into equations:

1. A central force depends only on the separation between the two bodies

~f21 = −~f12 = ~f(~r2 − ~r1) (23.4.1)

2. A central force points along the line connecting the two bodies

~f21 = −~f12 = ~f(~r2 − ~r1) = f(~r) r̂ (23.4.2)
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23.5 Angular Momentum

Consider the angular momentum of the reduced mass system ~L = ~r×~p = ~r×µ~v.
How does ~L change with time? We have:

d~L

dt
= d

dt
(~r × µ~v) (23.5.1)

= ~r × µ~̇v +����:
0

~v × µ~v (23.5.2)
= ~r × µ~a (23.5.3)

= ~r × ~F (23.5.4)

=���
���:

0
rr̂ × f(r)r̂ (23.5.5)

= 0 (23.5.6)

To get from (23.5.1) to (23.5.2), use the product rule, which is valid for cross
products as long as you don’t change the order of the factors. The second term
in (23.5.2) is zero since ~v × ~v = 0. To get from (23.5.4) to (23.5.5), impose the
assumption that the force is a central force. The expression (23.5.5) is zero
because rr̂ × r̂ = 0.
Question 23.5.1 Which of the steps in (23.5.1)-(23.5.6) are valid only for
central forces and which are true more generally?

Definition 23.5.2 Torque. Recall that ~r × ~F which occurs in (23.5.4) is
called the torque ~τ . ♦

To Remember. We have shown that in the case of central forces the time
derivative of the angular momentum, and hence the torque, is zero. Therefore:

~τ = d~L

dt
= 0 =⇒ ~L = constant (23.5.7)

Angular momentum is conserved in central force motion.
The central force ~F (r) depends only on the distance of the reduced mass

from the center of mass and not on the orientation of the system in space.
Therefore, this system is spherically symmetric; it is invariant (unchanged)
under rotations. Noether’s theorem states that whenever the laws of physics
are invariant under a particular motion or other operation, there will be a
corresponding conserved quantity. In this case, we see that the conservation
of angular momentum is related to the invariance of the physical situation
under rotations. Noether’s theorem, in general, is most easily discussed using
Lagrangian techniques.

23.6 Coordinates
The time has come to choose a coordinate system. We have argued that
the reduced mass central force problem is spherically symmetric in nature.
Therefore, it will be to our advantage to use spherical coordinates, defined
in the spherical coordinates section of Appendix B.1, rather than the more
comfortable Cartesian coordinates x, y, and z.

In fact, in the present classical mechanics context, we can do even better.
For a central force:

F = f(r) r̂ (23.6.1)
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the force, and hence the acceleration, is in the radial direction. Therefore, the
path of the motion (orbit) will be in the plane determined by the position vector
~r and velocity vector ~v of the reduced mass at any one moment of time. Since
there is never a component of force out of this plane, the subsequent motion
must remain in the plane. In this plane, choose plane polar coordinates:

x = r cosφ (23.6.2)
y = r sinφ (23.6.3)

Notice that many textbooks choose to call the angle of plane polar coordinates
θ. We choose φ so that plane polar coordinates can be seen as a cross-section
of spherical coordinates through the x, y-plane, i.e. for θ = π

2 .

23.7 Velocity & Acceleration
Newton’s Laws require a knowledge of velocity and acceleration. In Section 23.6,
we chose plane polar coordinates, so now we must deal with the problem of
how to compute velocity and acceleration as time derivatives of the position
vector ~r = rr̂ in terms of the coordinates r and φ and the basis vectors r̂ and
φ̂. A difficulty arises because r̂ (and φ̂) are not independent of position and
therefore are not independent of time. This problem does not present itself in
Cartesian coordinates because x̂, ŷ, and ẑ are independent of position. Using
the chain rule, the general velocity vector is given by:

~v = d~r

dt
= d

dt
(r r̂) = dr

dt
r̂ + r

dr̂

dt
(23.7.1)

To evaluate (23.7.1), we need the derivatives of r̂ (and φ̂) with respect to time.
One method for finding these time derivatives is to exploit the time inde-

pendence of the Cartesian basis. From Figure 23.7.1, we see that r̂ and φ̂ are
given, in terms of x̂ and ŷ, by

r̂ = cosφ x̂+ sinφ ŷ
φ̂ = − sinφ x̂+ cosφ ŷ (23.7.2)

Figure 23.7.1 The polar basis vectors at the point P can be found in terms
of the Cartesian basis vectors.

You should recognize this basis change as a rotation performed on the x̂, ŷ
basis. (

r̂

φ̂

)
=
(

cosφ sinφ
− sinφ cosφ

)(
x̂
ŷ

)
= R(φ)

(
x̂
ŷ

)
(23.7.3)

Using the chain rule, the general velocity vector is given by:

~v = d~r

dt
= d

dt
(r r̂) = dr

dt
r̂ + r

dr̂

dt
(23.7.4)
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To evaluate (23.7.1), we need the derivatives of r̂ (and φ̂) with respect to time.
Using the definitions in (23.7.3) above, we obtain:

dr̂

dt
= d

dt
(cosφ x̂+ sinφ ŷ) (23.7.5)

= − sinφdφ
dt
x̂+ cosφdφ

dt
ŷ

= dφ

dt
φ̂

dφ̂

dt
= d

dt
(− sinφ x̂+ cosφ ŷ)

= − cosφdφ
dt
x̂− sinφdφ

dt
ŷ

= −dφ
dt
r̂

where we have used the Cartesian expressions (23.7.2) for the polar basis vectors
in the last equalities of each calculation.
Notice that we have used the convenient notation of putting a dot over a
symbol to denote time derivative.

Combining these expressions with equation (23.7.1) gives:

~v = ṙ r̂ + rφ̇ φ̂ (23.7.6)

Alternatively, in Section 23.8, we use only reasoning about the orthonor-
mality of r̂ and φ̂ to find the same result.

Activity 23.7.1 Acceleration in Polar Coordinates. Taking another
derivative of (23.7.6) with respect to time, show that the acceleration is given
by

~a = ~̇v

=
(
r̈ − rφ̇2) r̂ +

(
rφ̈+ 2ṙφ̇

)
φ̂ (23.7.7)

23.8 Derivatives of Basis Vectors
Differentiating a vector field expressed in terms of the standard, rectangular
basis vectors is easy: Just differentiate the coefficients. Why? Because the
rectangular basis vectors are constant, that is

dx̂ = dŷ = dẑ = 0. (23.8.1)

However, if the vector field is expressed in terms of curvilinear basis vectors,
the product rule must be used! That is, both the coefficients and the basis
vectors must be differentiated. So we need to determine the differentials of the
basis vectors.

We start with polar coordinates. One could of course express the polar
basis {r̂, φ̂} in terms of the rectangular basis {x̂, ŷ} as in Section 23.7 and
differentiate, then transform the result back to the original, polar basis. But
this calculation can also be done entirely in the polar basis, as we show here.

Recall from Section 1.16 that the position vector in polar coordinates is
given by

~r = r r̂. (23.8.2)
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Zapping both sides of (23.8.2) with d and using the product rule yields

d~r = dr r̂ + r dr̂. (23.8.3)

Comparing (23.8.3) with the the geometric formula (8.3.1), we conclude that

dr̂ = dφ φ̂. (23.8.4)

To find dφ̂, we use the product rule together with the orthonormality of
the polar basis. Starting from

φ̂ · φ̂ = 1 (23.8.5)

we immediately have

dφ̂ · φ̂+ φ̂ · dφ̂ = 2dφ̂ · φ̂ = 0, (23.8.6)

a property that holds for any unit vector. Thus, the φ̂ component of dφ̂ must
vanish. Similarly, starting from

φ̂ · r̂ = 0 (23.8.7)

we obtain
dφ̂ · r̂ + φ̂ · dr̂ = 0 (23.8.8)

or equivalently
dφ̂ · r̂ = −φ̂ · dr̂ = −φ̂ · (dφ φ̂) = −dφ. (23.8.9)

Since we have already shown that the φ̂ component of dφ̂ vanishes, we can
conclude that

dφ̂ = −dφ r̂. (23.8.10)
In particular, if we want the time derivatives of the basis vectors, we can

divide (23.8.4) and (23.8.10) by dt to obtain

dr̂

dt
= dφ

dt
φ̂ (23.8.11)

dφ̂

dt
= −dφ

dt
r̂ (23.8.12)

Extending this argument to spherical coordinates isn’t quite as straightfor-
ward. It’s easy to show that (23.8.4) becomes

dr̂ = dθ θ̂ + r sin θ dφ φ̂ (23.8.13)

using an argument similar to the one above. But determining the angular
derivatives (without using rectangular basis vectors) requires a different ap-
proach. 1 The result, which could of course also be obtained using rectangular
basis vectors, is

dθ̂ = −dθ r̂ + cos θ dφ φ̂, (23.8.14)
dφ̂ = − sin θ dφ r̂ − cos θ dφ θ̂. (23.8.15)

1One possibility is to use the fact that mixed partial derivatives commute, so that

for instance
∂2~r

∂θ ∂φ
=

∂2~r

∂φ ∂θ
, along with the fact that the expression for d~r in spherical

coordinates (see the spherical coordinates section of Appendix B.2) tells us that ∂~r
∂θ

= r θ̂

and ∂~r
∂φ

= r sin θ φ̂. Another approach is to use differential forms (see for instance Chapter 6
of GDF).

https://physics.oregonstate.edu/coursewikis/GDF
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23.9 Kinetic Energy & Angular Momentum
In Section 23.7, we showed that the position and velocity vectors in polar
coordinates are given by

~v = ṙ r̂ + rφ̇ φ̂ (23.9.1)
~a =

(
r̈ − rφ̇2) r̂ +

(
rφ̈+ 2ṙφ̇

)
φ̂ (23.9.2)

Activity 23.9.1 Find the Kinetic Energy and Angular Momentum
in Polar Coordinates. Show that the kinetic energy T of the reduced mass
in polar coordinates is given by:

T = 1
2µ (ṙ2 + r2φ̇2) (23.9.3)

Similarly, show that the magnitude of the angular momentum |~L| = ` of the
reduced mass µ is given in polar coordinates by:

` = µr2φ̇ (23.9.4)

Hint. Don’t forget that v2 = ~v · ~v. Use the product rule.
Since the angular momentum is a constant in central force problems, it’s

magnitude ` is also constant. Therefore (23.9.4) can be used to rewrite differ-
ential equations, getting rid of φ̇’s in favor of the variable r and the constant
`.

Kepler’s second law says that the areal velocity of a planet in orbit is
constant in time. This is equivalent to equation (23.9.4). To see why, read
in section 8.3 of Marion and Thornton, page 294, from equation 8.10 to the
bottom of the page.

23.10 Equations of Motion: F = µa

The problem is now to the point where we can write the equations of motion
in a form we can solve. However, the importance of the preceding sections
cannot be stressed enough. The strategies that we used are important to the
success of problem solving in many complicated physics situations. Drawing
a picture, exploiting symmetries, choosing a convenient origin, and using the
most appropriate coordinate system all combine to make the analysis as easy as
possible. These and other tricks should always be regarded as a good beginning
to any problem.

Newton’s second law, reduced and modified for our specific problem is:

f(r) r̂ = µ~̈r = µ
(

(r̈ − rφ̇2) r̂ + (rφ̈+ 2ṙφ̇) φ̂
)

(23.10.1)

The vector equation breaks up, in polar coordinates, into two coupled differential
equations for r(t) and φ(t):

f(r) = µ(r̈ − rφ̇2) (23.10.2)
0 = µ(rφ̈+ 2ṙφ̇) (23.10.3)

(23.10.3) is just the polar coordinate statement of angular momentum
conservation, which we have already discussed, i.e.:

0 = rµ(rφ̈+ 2ṙφ̇) = d

dt

(
µr2φ̇

)
= d`

dt
(23.10.4)
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(To derive verify the equalities in (23.10.4) it is easiest to work from right to
left!) Therefore

µr2φ̇ = ` = constant (23.10.5)

can be solved for φ̇ and used in (23.10.2) to obtain a messy, second-order ODE
for r(t):

r̈ = `2

µ2r3 + 1
µ
f(r) (23.10.6)

In principle, we could now insert the particular form of f(r) we are concerned
with, solve (23.10.6) for r as a function of t, and insert this value in (23.10.5)
and solve for φ(t). We would then have solved the equations of motion for
r, and φ, parameterized by the time t. In practice, for any but the simplest
forms of f(r), it is impossible to solve the differential equations analytically.
Computers to the rescue! In Section 23.16 you can explore numerical solutions
for a 1/r2 force.

23.11 Graphs in Polar Coordinates
Functions expressed in polar coordinates can be graphed. For the function r(φ),
for each value of φ, an angle measured counterclockwise from the x-axis, plot
the distance r(φ), measured outward from the origin.

For example, conic sections can be described in the form

r(φ) = α

1 + ε cos(φ− δ)

as shown in Figure 23.11.1.

Figure 23.11.1 The polar plot of conic sections.

Activity 23.11.1 Use the visualization above to explore how the shape of a
conic section is influenced by the parameters α, ε, and δ.

23.12 Shape of the Orbit
In Section 23.10, we reduced the central force problem to a pair of uncoupled
ordinary differential equations for the variables r and φ as functions of time,
i.e. (23.10.5) and (23.10.6).

If we are only interested in the shape of the orbit, we can do something
simpler than solving the equations of motion for r and φ as functions of t; we
can solve for the shape of the orbit, i.e. instead of using the variable t as a
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parameter in (23.10.5) and (23.10.6), we will use the variable φ and solve for
r(φ), the polar equation for the shape of the orbit.

To do this, we need to change the time derivatives into φ derivatives:

d

dt
= dφ

dt

d

dφ
= φ̇

d

dφ
= `

µr2
d

dφ
(23.12.1)

It turns out that the differential equation which we obtain will be much
easier to solve if we also change independent variable from r to

u = r−1 (23.12.2)

(I don’t know how to motivate this clever guess.) Therefore,

dr

dt
= `

µr2
dr

dφ
= − `

µ

dr−1

dφ
= − `

µ

du

dφ
(23.12.3)

(To verify the second equality, work from right to left.) Then the second
derivative is given by

d2r

dt2
= d

dt

dr

dt
= `

µ
u2 d

dφ

(
− `
µ

du

dφ

)
= − `

2

µ2u
2 d

2u

dφ2 (23.12.4)

Plugging (23.12.2) and (23.12.4) into (23.10.6), dividing through by u2, and
rearranging, we obtain the orbit equation

d2u

dφ2 + u = − µ
`2

1
u2 f

(
1
u

)
(23.12.5)

For the special case of inverse square forces f(r) = −k/r2 (spherical gravi-
tational and electric sources), it turns out that the right-hand side of (23.12.5)
is constant so that the equation is particularly easy to solve. First, solve the
homogeneous equation (with f(r) = 0), which is just the harmonic oscillator
equation with general solution

uh = A cos(φ+ δ) (23.12.6)

Add to this any particular solution of the inhomogeneous equation (with
f(r) = −k/r2). By inspection, such a solution is just

up = µk

`2
(23.12.7)

so that the general solution of (23.12.5) for an inverse square force is

r−1 = u = uh + up = A cos(φ+ δ) + µk

`2
(23.12.8)

Then solving for r in (23.12.8) we obtain

r = 1
µk
`2 +A cos(φ+ δ)

=
`2

µk

1 +A′ cos(φ+ δ) (23.12.9)

This is the equation for a conic section, expressed in polar coordinates. You
can explore how the graph of this equation depends on the various parameters
in Section 23.11.
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23.13 Equations of Motion: Harmonic Oscillator
Using conservation of energy, let’s explore the motion of a classical harmonic
oscillator.

The statement of energy conservation:

E = T + U (23.13.1)

becomes
E = 1

2mẋ
2 + 1

2(x− x0)2 (23.13.2)

(23.13.2) can be solved for ẋ to give:

ẋ = ±
√

2
m

(
E − 1

2(x− x0)2
)

(23.13.3)

Activity 23.13.1 Explore how the shape of the effective potential (shown in
blue) depends on the parameters k and x0.

Figure 23.13.1 The effective potential of the classical harmonic oscillator is
shown in blue. For a given effective potential, the total energy E, shown in
green will determine the resulting motion.

23.14 Equations of Motion: E = T + U

Another theoretical tool we can use to arrive at an equation for the orbit is
conservation of energy. The central force ~F is conservative and can be derived
from a potential U(r) which depends only on the distance from the center of
mass (see practice problem [1.2]):

~F = −~∇U = −∂U(r)
∂r

r̂ (23.14.1)

The statement of energy conservation:

E = T + U (23.14.2)

becomes, using (23.9.3), (23.9.4), and (23.14.1):

E = 1
2µṙ

2 + 1
2
`2

µr2 + U(r) (23.14.3)

(23.14.3) can be solved for ṙ to give:

ṙ = ±

√
2
µ

(
E − U(r)

)
− `2

µ2r2 (23.14.4)
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(23.14.4) is an equivalent alternative to (23.10.6) as an equation of motion for
r(t). You might be surprised that (23.14.4) is a first order differential equation,
whereas (23.10.6) is second order. This means that only one initial condition is
required for the solution of (23.14.4) whereas two are needed for the solution of
(23.10.6). There is nothing surprising going on here. We have already provided
the extra information (the extra initial condition) by specifying the constant
total energy E.

23.15 Effective Potential
If we compare the equation for the position of a one-dimensional harmonic
oscillator (23.13.3)

ẋ = ±
√

2
m

(
E − 1

2(x− x0)2
)

(23.15.1)

from Section 23.13 with the equation for the radial coordinate (23.14.4)

ṙ = ±

√
2
µ

(
E − U(r)

)
− `2

µ2r2 (23.15.2)

= ±

√
2
µ

(
E − (U(r) + `2

2µr2 )
)

(23.15.3)

from Section 23.14, we can see an intriguing possibility. If we add together the
ordinary potential U(r) and the angular part of the kinetic energy, − `2

2µr2 , this
sum acts the same way in (23.14.4) as the potential does in (23.13.3). Then,
we can make a graph analogous to ... and analyze the classical turning points
of the motion.
Definition 23.15.1 Effective Potential. The sum of the ordinary potential,
U(r) and the angular part of the kinetic energy, − `2

2µr2 is called the effective
potential. ♦

The applet below shows you how the effective potential depends on the
parameters: (magnitude of the) angular momentum `, strength of the force k,
and reduced mass µ for the case −kr for spherically symmetric gravitational
or electrostatic forces. (Note that the dependence of k on µ for the case of
gravitational forces has been ignored.)

Activity 23.15.1 Explore how the shape of the effective potential (shown in
black) depends on the parameters `, k, and µ.
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Figure 23.15.2 The effective potential, shown in black is the sum of two terms:
the ordinary potential, shown in blue, and the angular part of the kinetic energy,
shown in red. For a given effective potential, the total energy E, shown in green
will determine the shape of the orbit.

23.16 Effective Potential and Orbits
The animation below shows you the relationship between the orbit and the
effective potential. Note that the two superimposed graphs have different axes.
The axes for the orbit shape are x(t) and y(t), while the axes for the effective
potential are energy plotted vs. the distance r(t) from the center of mass. The
two graphs are scaled so that the distance from the center of mass is the same
in both graphs, i.e. watch the distance between the orange dot and the two red
dots.
Activity 23.16.1 Explore how the orbit is related to the effective potential.

Figure 23.16.1 Orbits and the effective potential.

23.17 Everything Else
You should now work through sections 8.4–8.7 of Taylor. Pay particular
attention to the concept of the effective potential.

There are many areas left to explore if you are interested: questions of the
stability of orbits under perturbations, the precession of the orbit, and whether
it is open or closed. There are many interesting examples, even within our solar
system, that show the varied and unique outcomes of central force interactions:
Lagrange points, resonant orbits, horseshoe orbits, to name a few. There are
also other types of central forces. The repulsive inverse square force was very
important to early atomic experiments. Rutherford bombarded a lattice of gold
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with alpha particles (helium nuclei). The repulsive electrostatic interaction can
be handled easily by our preceding analysis. The theory fit experiment well
until the alpha particle energies became high enough to overcome the effective
potential and hit the nucleus head-on.

Many of the ideas in our analysis are handled nicely by the Lagrangian
formalism which you will study in the Classical Mechanics Capstone. Lagrangian
mechanics provides yet another starting point for obtaining the equations of
motion. The ideas of symmetry and conservation are more easily recognized
and handled within that context, which proves to be very powerful in more
complicated situations. When you reach that point, remember some of the
techniques we used here and then appreciate the simplicity and beauty provided
by the new viewpoint.



Chapter 24

Quantum Mechanics of the
Hydrogen Atom

24.1 Introduction to the Quantum Central Force
Problem

COMING SOON

24.2 Reduced Mass
It is helpful to consider briefly how the quantum two-body problem separates
into an equation governing the center of mass and an equation describing
the system around the center of mass, comparing this process to the classical
problem. The quantum two-body problem in three dimensions is very messy, but
all the essential features of the calculation show up in a simple onedimensional
model. So, for simplicity, let’s consider a system of two particles, m1 and
m2, lying on a line at positions x1 and x2, and let the interaction between
the particles be represented by a potential energy U that depends only on
x = x1 − x2, the separation distance between the particles. Don’t worry about
how the particles can get past each other on the line—this is a simple toy model;
just imagine that they can pass right through each other.

Our first job, as always, is to identify the Hamiltonian Hop for the system.
Because energies are additive, the kinetic part of the Hamiltonian is just the
sum of the kinetic parts for two individual particles and the potential U(x)
describes the interaction between them. Therefore the Hamiltonian is

Hop = − ~2

2m1

∂2

∂x2
1
− ~2

2m1

∂2

∂x2
1

+ U(x) (24.2.1)

and the wave function Ψ is a function of the positions of both particles (and of
course time) Ψ = Ψ(x1, x2, t).

Inspired by our experience with classical two-body systems, we will try
rewriting the Hamiltonian (24.2.1) in terms of the center-of-mass coordinate X,
given by

X = m1x1 +m2x2

m1 +m2

and the relative coordinate x. We will use the chain rule of calculus to transform
the partial derivatives in (24.2.1) to derivatives with respect to x and X. (Please

245
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see Appendix [A], especially the worked example on plane polar coordinates.)
The transformations for first derivatives are:

∂

∂x1
= ∂x

∂x1

∂

∂x
+ ∂X

∂x1

∂

∂X
= ∂

∂x
+ m1

m1 +m2

∂

∂X
(24.2.2)

∂

∂x2
= ∂x

∂x2

∂

∂x
+ ∂X

∂x2

∂

∂X
= − ∂

∂x
+ m2

m1 +m2

∂

∂X
(24.2.3)

It is important to note that we cannot simply write equations (24.2.2)–(24.2.3)
for the second derivative, which is what we need for the Hamiltonian (24.2.1). To
find the second derivative, we must apply the first derivative rules (24.2.2)–(24.2.3)
twice:

∂2

∂x2
1

= ∂

∂x1

∂

∂x1
Ψ

=
(
∂

∂x
+ m1

m1 +m2

∂

∂X

)(
∂

∂x
+ m1

m1 +m2

∂

∂X

)
Ψ

= ∂2

∂x2 Ψ + 2m1

m1 +m2

∂2

∂x∂X
Ψ +

(
m1

m1 +m2

)2
∂2

∂X2 Ψ (24.2.4)

∂2

∂x2
2

= ∂

∂x2

∂

∂x2
Ψ

=
(
− ∂

∂x
+ m2

m1 +m2

∂

∂X

)(
− ∂

∂x
+ m2

m1 +m2

∂

∂X

)
Ψ

= ∂2

∂x2 Ψ− 2m2

m1 +m2

∂2

∂x∂X
Ψ +

(
m1

m1 +m2

)2
∂2

∂X2 Ψ (24.2.5)

Substituting into the Hamiltonian (24.2.1), we obtain for Schrödinger’s equation(
− ~2

2µ
∂2

∂x

2

− ~2

2(m1 +m2)
∂2

∂X2 + U(x)
)

Ψ(X,x, t) = i~
∂

∂t
Ψ(X,x, t)

(24.2.6)
By transforming to these coordinates, the middle terms in equations (24.2.4)
and (24.2.5) have canceled, enabling us to separate the dependence on x from
the dependence on X. We can now write

Ψ(x,X, t) = ΨM (X)Ψµ(x)T (t) (24.2.7)

After a separation of variables procedure (see Appendix [B]) on equation (24.2.7),
we find that the ordinary differential equation governing the variable X has a
simple, recognizable form (see Problem [ProbsC].[14.3b]). The solution has the
same form as the free-particle solution to the Schrödinger equation (also called
the plane-wave solution to the equation)

ΨM (X) = eiPXX/~ (24.2.8)

where PX represents the momentum associated with the motion of the center
of mass. All observables in quantum mechanics involve the probability density,
i.e. terms of the form Ψ∗Ψ, so if we are evaluating observables associated with
the relative motion, the pure phase contribution from the center-of-mass has
no effect. We can therefore ignore the center-of-mass motion and concentrate
only on the relative motion.

We have arrived at a conclusion in the quantum analysis of the two-body
problem that is similar to our analysis of the classical problem (but for different
reasons). We have again replaced the more complicated two-body system with
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a fictitious one-body system, involving the relative coordinate and the reduced
mass. Once we have solved the problem and found Ψµ(x) and T (t), we can
then reverse the procedure in this section to find the wave function Ψ(x1, x2, t)
describing the original two-body system. The analysis in three dimensions is
the same, except that we must do the calculation three times, once for each of
the rectangular coordinates.

24.3 Schrödinger’s Equation in Spherical Coor-
dinates

Schrödinger’s equation is
HopΨ = i~

∂Ψ
∂t

(24.3.1)

For one-dimensional waves, the Hamiltonian is

Hop = − ~2

2µ
∂2

∂x2 + U(x) (24.3.2)

In a central potential the role of the second derivative with respect to x is
played by the Laplacian operator ∇2 and the potential energy is a function
only on the separation variable U = U(r), making the Hamiltonian:

Hop = − ~2

2µ∇
2 + U(r) (24.3.3)

Because of the parameter r, this problem is clearly asking for the use of spherical
coordinates, centered at the origin of the central force.

In rectangular coordinates, we know that the Laplacian ∇2 is given by:

∇2 = ∂2

∂x2 + ∂2

∂z2 + ∂2

∂z2

What is the Laplacian in spherical coordinates? Since ∇2 def= ~∇ · ~∇, combine
the spherical coordinate definitions of gradient and divergence

~∇V = ∂V

∂r
r̂ + 1

r

∂V

∂θ
θ̂ + 1

r sin θ
∂V

∂φ
φ̂ (24.3.4)

~∇ · ~v = 1
r2

∂

∂r

(
r2vr

)
+ 1
r sin θ

∂

∂θ
(sin θ vθ) + 1

r sin θ
∂vφ
∂φ

(24.3.5)

to obtain:

∇2 = 1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2 (24.3.6)

For convenience, we will give the combination of angular derivatives which
appears in (24.3.6) a new name:

Lop
def= −~2

[
1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
(24.3.7)

Notice the conventional factor of −~2. ~ is a constant, 1.05459×10−27 ergsec =
6.58217× 10−16 eV-sec. Notice that the dimensions of ~ are those of angular
momentum. With this definition, (24.3.6) becomes:

∇2 = 1
r2

∂

∂r

(
r2 ∂

∂r

)
− 1

~2r2L
2
op (24.3.8)
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24.4 Separation of Variables on a Ring
To begin our study of the properties of the solutions of Schrödinger’s equation in
cases with spherical symmetry, we first consider the simpler case of the motion
of a quantum particle of mass µ confined to move on a ring of constant radius
r0. As with classical orbits, let’s assume that the ring lies in the (x, y)-plane, so
that in spherical coordinates θ = π

2 = const. Then, since Ψ is independent of r
and θ, derivatives with respect to those variables give zero and Schrödinger’s
equation from Section 24.3 reduces to

i~
∂Ψ
∂t

= HopΨ

= − ~2

2µ
1
r2
0

∂2

∂φ2 Ψ + U(r0)Ψ (24.4.1)

Redoing the separation of variables procedure of Section 18.5, and assuming
that Ψ = T (t)Φ(φ) only, we obtain the following separated ordinary differential
equations

d2Φ
dφ2 = −2I

~2 (E − U(r0)) Φ (24.4.2)

dT

dt
= − i

~
ET (24.4.3)

where we have used the substitution µr2
0 = I, in which I would be the moment

of inertia of a classical particle of mass µ traveling in a ring of radius r0 about
the center-of-mass.

Alternatively, we could have obtained equations (24.4.2) and (24.4.3) from
the results of our original separation of variables procedure (18.5.9), (18.5.15),
(18.5.17), (18.5.18), by restricting the variables r and θ to the equator, noticing
that the functions R and P are therefore constant, and by finding that equation
(18.5.15) reduces to:

A = 2µ
~2 (E − U(r0))r2

0 (24.4.4)

and equation (18.5.17) then reduces to:

B = −2µ
~2 (E − U(r0))r2

0. (24.4.5)

24.5 Motion on a Ring
Now we want to solve (24.4.2) for Φ(φ) obtained from the separation of variables
procedure in Section 24.4 for a quantum mechanical particle confined to a ring.
Since the coefficient of Φ on the right-hand-side of (24.4.2) is a constant√

2I
~2 (E − U(r0)) = constant (24.5.1)

this equation is identical to the equation for an undamped harmonic oscillator,
with a solution basis that we can choose to be either sines and cosines or
imaginary exponentials. For reasons that will become clear later, we will choose
exponentials

Φm(φ) def= N eimφ (24.5.2)
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where

m = ±
√

2I
~2 (E − U(r0)) (24.5.3)

and N is a normalization constant.
There is no spatial “boundary” on the ring on which we can impose boundary

conditions. However, there is one very important property of the wave function
that we can invoke: it must be single-valued. The variable φ is geometrically
an angle, so that φ+ 2π is physically the same point as φ. If we go once around
the ring and return to our starting point, the value of the wave function must
remain the same. Therefore the solutions must satisfy the periodicity condition
Φm(φ+ 2π) = Φm(φ). This is impossible unless m is real so that the solutions
are oscillatory, i.e. E − U(r0) > 0. Furthermore, the solutions must have the
correct period, i.e.

m ∈ {0,±1,±2, ...}. (24.5.4)

The quantum number m is called the azimuthal or magnetic quantum number.
Note that the solution permits both positive and negative values of m as well
as zero.

Solving (24.5.3) for the possible eigenvalues of energy, we obtain

Em = ~2

2I m
2 + U(r0) (24.5.5)

For this simplified ring problem, we can choose the potential energy U(r0) to be
zero, but we will have to remember that we should not make this choice when
we are working on the full hydrogen atom problem. There is a degeneracy that
arises in this calculation. Note that the wave functions corresponding to +|m|
and −|m| have the same energy but, (as we will see in Section 24.7), represent
different states of the motion.

This is a one-dimensional problem, just like the problem of a particle-in-a-
box (now using the independent variable φ instead of x) and the solutions have
the same oscillatory form. Everything that you learned about a particle-in-a-box
is immediately applicable here. As in that problem, the energy eigenvalues
are discrete because of a boundary condition. The only differences that arise
come from the different boundary conditions. In the ring case, the appropriate
boundary condition is periodicity, since φ is a physical angle. Therefore, the
eigenstates have to fit an integer number of wavelengths into the ring and the
energy eigenvalues are degenerate. For a particle-in-a-box, Ψ(x) = 0 at the
boundaries, appropriate to an infinite potential. Therefore, the eigenstates can
fit a half integer number of wavelengths into the box and the energy eigenvalues
are not degenerate.

24.6 Normalization of States on a Ring
In Section 24.5, we found the energy and angular momentum eigenstates for a
quantum particle on a ring to be

Φm(φ) def= N eimφ (24.6.1)

where
m ∈ {0,±1,±2, ...} (24.6.2)

and N is a normalization constant.
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As usual, we choose the normalization N in (24.5.2) so that, if the particle
is in an eigenstate, the probability of finding it somewhere on the ring is unity.

1 =
∫ 2π

0
Φ∗m(φ) Φm(φ) r0 dφ (24.6.3)

=
∫ 2π

0
N∗e−imφNeimφ r0dφ (24.6.4)

= 2πr0|N |2 (24.6.5)

⇒ N = 1√
2πr0

(24.6.6)

where we have chosen the arbitrary phase in N to be one.

24.7 Angular Momentum of the Particle on a
Ring

Classically, a particle moving in a circle has an angular momentum perpendicular
to the plane of the circle, which for a ring in the x, y–plane would be in the
z direction. Since angular momentum is defined by ~L = ~r × ~p. To make
the transition to quantum mechanics, we replace px and py by their operator
equivalents:

Lz = xpy − ypx =⇒ L̂z = x
~
i

∂

∂y
− y~

i

∂

∂x
(24.7.1)

Using a straightforward application of the chain rule (see Practice Problems,
below) to replace the Cartesian partial derivatives with their polar representa-
tions, we obtain

L̂z = ~
i

∂

∂φ
(24.7.2)

The effect of operating on the ring eigenfunctions with this operator is:

~
i

∂

∂φ

(
1√
2π
eimφ

)
= m~

(
1√
2π
eimφ

)
(24.7.3)

The energy eigenfunctions Φm(φ) are thus also eigenfunctions of L̂z with
eigenvalues m~. Because the Φm(φ) are eigenfunctions of both energy and
angular momentum, we can make simultaneous determinations of the eigenvalues
of energy and angular momentum.

Considering the angular momentum helps us understand the degeneracy of
the eigenfunctions with respect to energy. The ±m degeneracy of the energy
eigenstates corresponds to Lz = +m~ and Lz = −m~. That is, the two
degenerate states represent particles rotating in opposite directions around the
ring.

For a classical particle rotating in a circular path in the x, y-plane, the
kinetic energy is T = 1

2Iω
2 = L2

z/2I, where I is the rotational inertia (moment
of inertia). The rotational inertia of a single particle of mass µ moving in a
circle of radius r0 is I = µr2

0. The Hamiltonian for the system is thus

H = T + U = L2
z

2I + U = ~2

2µr2
0

∂2

∂φ2 + U0 (24.7.4)

It is apparent from this approach that the energy and the angular momentum
have simultaneous eigenvalues because they are commuting operators. Clearly
[L2
z, Lz] = 0, so that E and Lz have the same eigenfunctions. Therefore, we
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see that (24.4.2) and (24.7.3) are the position-space representations of the
eigenvalue equations

Ĥ|m〉 = Em|m〉 (24.7.5)
L̂|m〉 = ~m|m〉 (24.7.6)

Because the Φm are simultaneous eigenstates of both Ĥ and L̂z, it is possible
to make simultaneous measurements of both the energy and the z-component
of angular momentum.

In setting up the problem of the particle on the ring, we constrained the
motion to the x, y-plane, so that the angular momentum vector is in the z
direction. However, according to quantum mechanics (yet another form of the
Heisenberg uncertainty relationships) it is not possible to know the direction of
the angular momentum vector. Our knowledge of the angular momentum vector
is limited to its length and any one component. If the vector lies along the z-axis,
then we would know all three of its components (the x and y components being
zero). We’ll see how the three-dimensional problem solves this contradiction.

24.8 Time Dependence of Ring States
We know, from the theory of Fourier series, that we can write any initial
probability distribution, which is necessarily periodic, as a sum of the energy
eigenstates:

Φ(φ) =
∞∑

m=−∞
cmΦm(φ) =

∞∑
m=−∞

cm

(
1√

2πr0
eimφ

)
(24.8.1)

where, for the probability distribution to be normalized, we must have:
∞∑

m=−∞
|cm|2 = 1 (24.8.2)

To find the time evolution of the eigenstates Φm(φ), we must solve the t
equation (24.4.3). Since, for each Φm, we have now found the value of the
constant E = Em, given by (24.5.5), we can solve (24.4.3) trivially:

T (t) = e−
~
i Emt (24.8.3)

A deep theorem in the theory of partial differential equations states that
if you have found an expansion of the initial probability density in terms of
the eigenstates of the Hamiltonian, then the time evolution of that probability
density is simply obtained by multiplying each eigenstate individually by the
appropriate time evolution:

Φ(φ, t) =
∞∑

m=−∞
cmΦm(φ)e− ~

i Emt (24.8.4)

BE CAREFUL! There are an infinite number of different values for the energy,
depending on the eigenstate of the Hamiltonian. It is incorrect to multiply the
initial state (24.8.1) by a single over-all exponential time factor. Each term in
the series gets its own time evolution.
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24.9 Visualization of States on a Ring
The applet below displays the real and imaginary parts of the wave function

ψ =
∑
m

(cm + idm) eimφe−im
2t

as well as the probability density |ψ|2.

Activity 24.9.1 Explore how the ring state is made up out of a linear combi-
nation of basis states.

Figure 24.9.1 Move the sliders to visualize linear combinations of eigenstates
on the ring. The figure shows plots of the real and imaginary parts of the wave
function Reψ, Imψ, and the probablity density |ψ|2. Click on the button for an
animation that demonstrates the time dependence.

24.10 Motion on a Sphere
We will now relax the restriction that the mass be confined to the ring and,
instead, let it range over the surface of a sphere of radius r0. The results of this
analysis yield predictions that can be successfully compared with experiment for
molecules and nuclei that rotate more than they vibrate. For this reason, the
problem of a mass confined to a sphere is often called the rigid rotor problem.
Furthermore, the solutions that we will find for (18.5.17)–(18.5.18) and, called
spherical harmonics, will occur whenever one solves a partial differential equation
that involves spherical symmetry.

Following the techniques in Section 24.4, you should be able to write
down the Schrödinger equation for a particle restricted to a sphere and use
the separation of variables procedure to obtain an equivalent set of ordinary
differential equations. One of the equations you obtain will be (18.5.18), with
solutions exactly as we found them for the ring in Section 24.5. The other
equation will be (18.5.17) with slightly different labels for the unknown constant,
i.e. (

sin θ ∂
∂θ

(
sin θ ∂

∂θ

)
−A sin2 θ −m2

)
P (θ) = 0 (24.10.1)

where m is a known integer and A is an unknown constant.



CHAPTER 24. QUANTUM MECHANICS OF THE HYDROGEN ATOM253

A straightforward change of variables (see Section 24.11) turns (24.10.1)
into (24.11.6), i.e.

∂2P

∂z2 −
2z

1− z2
∂P

∂z
− A

1− z2P −
m2

(1− z2)2P = 0 (24.10.2)

This equation is the Associated Legendre’s Equation. For any given integer
value of m, it is a Sturm-Liouville equation Section 19.1. The solutions are
called Associated Legendre Functions. When the eigenvalue A takes the special
form A = −`(`+ 1) and for |m| ≤ `, the solutions Pm` (z) form a basis for any
sufficiently smooth function on the interval −1 ≤ z ≤ 1 that does not blow up
at the endpoints. More information about Associated Legendre functions can
be found in Section 19.6 and, of course, online.

If you recognize a known Sturm-Liouville equation, you can always just
look up the solutions, called special functions. They arise from particular
geometric situations, so knowing where the equation comes from will help with
guessing which equation it is. But, if you’d like to learn more about how to
solve a Sturm-Liouville problem that is unknown or that you don’t recognize,
you can find an example of using the power series method to solve Legendre’s
equation (the special case m = 0) in Section 16.2 and details about how to use
the solutions, called Legendre polynomials, to make an eigenfunction expansion
(a generalization of Fourier series) in Chapter 19.

Notice that we have undone the change of coordinates in the Associated
Legendre Function by making the replacement z → cos θ.

A complete basis of eigenstates for a quantum particle confined to the
surface of a sphere (or for the angular part of any PDE involving the Laplacian
in spherical coordinates) can be found from multiplying any basis state Φm(φ)
with any basis state Pm` (cos θ), subject to the restrictions ` is a non-negative
integer, m is an integer (positive, negative, or zero), and m ≤ `. Properly
normalized, these functions are called spherical harmonics.

|`,m〉 .= Y m` (θ, φ) (24.10.3)

= (−1)(m+|m|)/2

√
(2`+ 1)

4π
(`− |m|)!
(`+ |m|)! P

m
` (cos θ) eimφ (24.10.4)

See Section 19.7 for more details about the algebra and Section 19.8 for some
interactive visualizations.

24.11 Change of Variables
Since we have solved the φ equation (18.5.18) and found the possible values of
the separation constant

√
B = m ∈ {0,±1,±2, ...}, the θ equation becomes an

eigenvalue/eigenfunction equation for the unknown separation constant A and
the unknown function P (θ).(

sin θ ∂
∂θ

(
sin θ ∂

∂θ

)
−A sin2 θ −m2

)
P (θ) = 0 (24.11.1)
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Figure 24.11.1 Relationship between z and θ.
We start with a change of independent variable z = cos θ where z is the

usual rectangular coordinate in three-space. As θ ranges from 0 to π, z ranges
from 1 to −1. We see from Figure 24.11.1 that:√

1− z2 = sin θ (24.11.2)

Using the chain rule for partial derivatives, we have:

∂

∂θ
= ∂z

∂θ

∂

∂z
= − sin θ ∂

∂z
= −

√
1− z2 ∂

∂z
(24.11.3)

Notice, particularly, the last equality: we are trying to change variables from
θ to z, so it is important to make sure we change all the θ’s to z’s. Multiplying



CHAPTER 24. QUANTUM MECHANICS OF THE HYDROGEN ATOM255

by sin θ we obtain:
sin θ ∂

∂θ
= −

(
1− z2) ∂

∂z
(24.11.4)

Be careful finding the second derivative; it involves a product rule:

sin θ ∂
∂θ

(
sin θ ∂

∂θ

)
=
(
1− z2) ∂

∂z

((
1− z2) ∂

∂z

)
=
(
1− z2)2 ∂2

∂z2 − 2z
(
1− z2) ∂

∂z
(24.11.5)

Inserting (24.11.2) and (24.11.5) into (24.11.1), we obtain a standard form
of the Associated Legendre’s equation:

∂2P

∂z2 −
2z

1− z2
∂P

∂z
− A

1− z2P −
m2

(1− z2)2P = 0 (24.11.6)

In Section 16.2 and Section 19.6, we will solve this equation. After we have
found the eigenfunctions P (z), we will substitute z = cos θ everywhere to find
the eigenfunctions of the original equation (24.11.1).
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Standard Algebra Strategies

A.1 Completing the Square
An important algebraic technique is known as completing the square. For
example, when trying to identify the shape of the curve satisfying

x2 − 6x+ y2 = 16 (A.1.1)

we can start by noticing the terms x2 + y2, which suggests that this implicit
equation might describe a circle. The equation for a circle involves the sum of
squares, so we need to find a way to convert the terms x2 − 6x into a perfect
square. That is, we’d like to replace these terms by something of the form
(x− h)2. Expanding, we have

(x− h)2 = x2 − 2hx+ h2 (A.1.2)

so it is clear that we should set h = 3. What about the missing term h2 = 9?
Take it from the constant term 16! Explicitly, since

(x− 3)2 = x2 − 6x+ 9 (A.1.3)

we have
16 = x2 − 6x+ y2 =

(
(x− 3)2 − 9

)
+ y2 (A.1.4)

or in other words
(x− 3)2 + y2 = 25 (A.1.5)

which is the equation of a circle of radius 5 centered at the point (3, 0).
This example demonstrates the technique known as completing the

square. Given an expression of the form

Q = ax2 + bx (A.1.6)

we’d like to eliminate the linear term. Reasoning along similar lines as above,
we have

Q = a

(
x2 + b

a
x

)
= a

(
x2 + b

a
x+ b2

4a2 −
b2

4a2

)
= a

(
x+ b

2a

)2
− b2

4a (A.1.7)

Completing the square is the technique used to prove the quadratic for-
mula, see Section A.2.

256
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A.2 The Quadratic Formula
Definition A.2.1 The Quadratic Formula. The quadratic formula
gives the solution of the second-order polynomial equation

ax2 + bx+ c = 0 (A.2.1)

i.e.
x = 1

2a

{
−b±

√
b2 − 4ac

}
(A.2.2)

♦
The proof of the quadratic formula involves completing the square, see

Section A.1. Starting from

ax2 + bx+ c = 0 (A.2.3)

we immediately have

a

(
x+ b

2a

)2
− b2

4a + c = 0 (A.2.4)

so that (
x+ b

2a

)2
= b2

4a2 −
c

a
(A.2.5)

= b2 − 4ac
4a2 . (A.2.6)

Taking the square root of both sides and rearranging terms yields the quadratic
formula in its standard form (A.2.2).

Definition A.2.2 Degeneracy. An nth-order polynomial always has n
(complex) roots, but these roots may be repeated. In physics contexts, we call
the physical quantity represented by the repeated root degenerate, see the
contexts of matrix eigenvalues Section 4.2 and solutions of ODEs Section 15.6.
A root that is repeated m times is called m-fold degenerate. ♦

A.3 Function Transformations
In pure mathematics settings, both the inputs and the outputs of functions are
typically pure numbers, without dimensions, and the descriptions of functions
like cosx and ex are chosen to make them look as simple as possible. But, in
applied settings these functions must be tailored to model the physical situation,
by inserting parameters that may have dimensions, such as A cos(kx− δ) and
Ae(kx−δ). How do these parameters change the shape of the graphs?

Activity A.3.1 Visualizing Parameters that Transform Functions. In
the applet below, you can enter a function of your choice, of the form Af(kx−δ),
where A, k, and δ are three arbitrary real parameters. (The default function is
A cos(kx − δ).) Determine how (and why!) the three parameters change the
function.
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Figure A.3.1 An applet that allows you to change the values of A, k, and δ in
Af(kx− δ). The default function displayed is A cos(kx− δ).

Solution. Because A multiplies the overall value of the function (i.e. the
range), increasing A increases the vertical extent of the graph by a factor of A.
Because k multiplies the argument of the function (i.e. the domain), increasing
k means the argument will increase faster, so the shape of function will be
compressed horizontally. Because δ is subtracted from the argument of the
function (i.e. the domain), increasing delta makes the argument look less than
it really is, so the whole graph moves horizontally, to the right.
Definition A.3.2 Amplitude, Wave Number, Angular Frequency, and
Phase. In the function Af(kx− δ), the parameter A is called the amplitude;
the parameter k is called the wave number; and the parameter δ is called
the phase. If the variable in the function is time t, then the functional form
is usually written Af(ωt − δ), and the parameter ω is called the angular
frequency rather than wave number. ♦
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Formulas

B.1 Coordinate Systems

B.1.1 Cylindrical Coordinates

x = s cosφ s2 = x2 + y2

y = s sinφ tanφ = y/x

z = z z = z

0 ≤ s <∞
0 ≤ φ < 2π

−∞ < z <∞

259
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Figure B.1.1 The definition of cylindrical coordinates, also showing the asso-
ciated basis vectors.

B.1.2 Spherical Coordinates

x = r sin θ cosφ r2 = x2 + y2 + z2

y = r sin θ sinφ tan θ =
√
x2 + y2/z (B.1.1)

z = r cos θ tanφ = y/x

Be careful to remember the ranges of the two angles!

0 ≤ r <∞
0 ≤ θ < π

0 ≤ φ < 2π
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Figure B.1.2 The geometric definition of spherical coordinates, also showing
the associated basis vectors.

Notation. Both of these coordinate systems reduce to polar coordinates in
the x, y-plane, where z = 0 and θ = π/2 if, in the cylindrical case you relabel
s to the more standard r. In both cases, φ rather than θ is the label for the
angle around the z-axis. Make sure you know which geometric angles θ and φ
represent, rather than just memorizing their names. Whether or not you adopt
the conventions used here, you should be aware that many different labels are
in common use for both of these angles. In particular, you will often see the
roles of θ and φ interchanged, particularly in mathematics texts.

Another common convention for curvilinear coordinates is to use ρ for the
spherical coordinate r. We will not use ρ for the radial coordinate in spherical
coordinates because we want to reserve it to represent charge or mass density.
Some sources use r for both the axial distance in cylindrical coordinates and
the radial distance in spherical coordinates.

B.2 Formulas for Div, Grad, Curl

B.2.1 Rectangular Coordinates

d~r = dx x̂+ dy ŷ + dz ẑ
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~F = Fx x̂+ Fy ŷ + Fz ẑ

~∇f = ∂f

∂x
x̂+ ∂f

∂y
ŷ + ∂f

∂z
ẑ

~∇ · ~F = ∂Fx
∂x

+ ∂Fy
∂y

+ ∂Fz
∂z

~∇× ~F =
(
∂Fz
∂y
− ∂Fy

∂z

)
x̂+

(
∂Fx
∂z
− ∂Fz

∂x

)
ŷ +

(
∂Fy
∂x
− ∂Fx

∂y

)
ẑ

∇2f = ∂2f

dx2 + ∂2f

dy2 + ∂2f

dz2

B.2.2 Cylindrical Coordinates

d~r = ds ŝ+ s dφ φ̂+ dz ẑ

~F = Fs ŝ+ Fφ φ̂+ Fz ẑ

~∇f = ∂f

∂s
ŝ+ 1

s

∂f

∂φ
φ̂+ ∂f

∂z
ẑ

~∇ · ~F = 1
s

∂

∂s
(sFs) + 1

s

∂Fφ
∂φ

+ ∂Fz
∂z

~∇× ~F =
(

1
s

∂Fz
∂φ
− ∂Fφ

∂z

)
ŝ+

(
∂Fs
∂z
− ∂Fz

∂s

)
φ̂+ 1

s

(
∂

∂s
(sFφ)− ∂Fs

∂φ

)
ẑ

∇2f = 1
s

∂

∂s

(
s
∂f

∂s

)
+ 1
s2
∂2f

dφ2 + ∂2f

dz2

B.2.3 Spherical Coordinates

d~r = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂
~F = Fr r̂ + Fθ θ̂ + Fφ φ̂

~∇f = ∂f

∂r
r̂ + 1

r

∂f

∂θ
θ̂ + 1

r sin θ
∂f

∂φ
φ̂

~∇ · ~F = 1
r2

∂

∂r

(
r2Fr

)
+ 1
r sin θ

∂

∂θ
(sin θFθ) + 1

r sin θ
∂Fφ
∂φ

~∇× ~F = 1
r sin θ

(
∂

∂θ
(sin θFφ)− ∂Fθ

∂φ

)
r̂ + 1

r

(
1

sin θ
∂Fr
∂φ
− ∂

∂r
(rFφ)

)
θ̂

+ 1
r

(
∂

∂r
(rFθ)−

∂Fr
∂θ

)
φ̂

∇2f = 1
r2

∂

∂r

(
r2 ∂f

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂f

∂θ

)
+ 1
r2 sin2 θ

∂2f

∂φ2



Appendix C

Symbols

Symbol Description Page

z = x+ iy the rectangular form of a complex number z
with real part x and imaginary part y

34

Re z, < z the real part of a complex number z or the real
axis in the complex plane

34

Im z, = z the imaginary part of a complex number z or
the imaginary axis in the complex plane

34

z∗, z̄ complex conjugate of a complex number z 36
|z| norm of a complex number z 37
z = reiφ the exponential form of a complex number z 40
MT transpose of a matrix M 47
A |v〉 = λ |v〉 the eigenvalue/eigenvector equation for a linear

operator A
52

[M,N ] ≡MN −NM the commutator of two operators M and N 57
N† = N∗T the Hermitian conjugate (or adjoint) of a matrix

N A
57

P 2
v = Pv the definition of a projection operator Pv 61
Pv = |v〉〈v| the bra-ket form of a projection operator Pv 61
{σx, σy, σz} Pauli matrices 64
dy
dx Leibniz notation for derivative 69
y′ Lagrange notation for derivative (w.r.t. x) 69
ẏ Newton notation for derivative (w.r.t. t) 69
∀ “for all” 145
〈~u|~v〉 the inner product of the vectors |~u〉 and |~v〉 151
ODE ordinary differential equation 159
PDE partial differential equation 159
L linear differential operator 160
P`(z) Legendre polynomial of degree ` 175
δij the Kronecker Delta 177
Θ(x) the step function (alternatively, theta or Heavi-

side function)
179

δ(x) the Dirac delta function (alternatively, distribu-
tion)

180

263
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Notation

Notation 2.1.1 Real and Imaginary Parts of a Complex Number
Notation 6.2.1 Derivatives
Notation 13.1.1 Power Series
Notation 15.1.1 Linear Differential Operators

264
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Definitions

Definition 2.1.1 Complex Number
Definition 2.3.1 Complex Conjugate
Definition 2.3.3 Norm (or Magnitude) of a Complex Number
Definition 2.6.1 Euler’s formula
Definition 2.7.1 The Exponential Form of a Complex Number
Definition 2.9.1 The Exponential of a Complex Number
Definition 2.10.1 Analytic Continuation
Definition 3.3.2 Outer Product
Definition 4.1.1 Eigenvalue/Eigenvector Equation
Definition 4.2.2 Degeneracy/Multiplicity
Definition 4.4.1 Normalized Vector
Definition 4.5.1 Diagonal Matrix
Definition 4.6.1 Eigenspace
Definition 5.1.1 Commutator
Definition 5.2.1 Hermitian Matrices
Definition 5.6.1 Projection Operator
Definition 5.7.1 The Completeness Relation
Definition 14.1.1 Vector Space
Definition 14.2.1 Inner Product
Definition 14.6.2 Inner Product for Fourier Series
Definition 14.7.1 Completeness
Definition 14.8.1 Linear Operator
Definition 15.1.1 Differential Equations
Definition 15.1.2 Linearity and Homogeneity
Definition 15.1.3 Solution (of a differential equation)
Definition 15.1.4 Initial and Boundary Value Problems
Definition 15.2.1 Forms of First-Order ODEs
Definition 15.6.1 Ansatz
Definition 15.6.2 Characteristic Polynomial Equation
Definition 15.7.1 Linear Independence of Functions
Definition 16.2.1 Legendre’s Equation
Definition 16.2.2 Recurrence Relation
Definition 16.2.3 Legendre Polynomials
Definition 16.3.1 Regular Point of an ODE
Definition 16.3.3 Regular Singularity of an ODE
Definition 17.1.1 The Kronecker Delta

(Continued on next page)
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Definition 17.3.1 The Step or Heaviside Function
Definition 17.4.1 The Dirac Delta Function
Definition 17.6.1 Discrete vs. Continuous Variables
Definition 18.4.1 Separation of Variables
Definition 23.1.1 Central Force
Definition 23.2.1 Position of the Center of Mass
Definition 23.2.2 Momentum of the Center of Mass
Definition 23.3.3 Reduced Mass
Definition 23.5.2 Torque
Definition 23.15.1 Effective Potential
Definition A.2.1 The Quadratic Formula
Definition A.2.2 Degeneracy
Definition A.3.2 Amplitude, Wave Number, Angular Frequency, and Phase
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continuous variable
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degeneracy
in matrix eigenvalues, 53, 56
in ODEs, 164
in the quadratic formula, 257

diagonal matrix, 55
diagonalization

definition, 64
differential equation

definition, 159
degree of, 159
general solution, 160
homogeneous, 159
inhomogeneous, 159
order of, 159
ordinary, 159
partial, 159
particular solution, 160
solution of, 160

differential operator
linear, 159

diffusion equation, 189
discrete variable

definition, 182

effective potential
definition, 242

eigenspace
for matrices, 56

eigenvalue
for matrices, 52

eigenvalue/eigenvector equation
definition, 52

eigenvector
for matrices, 52
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informal definition, 53
Euler’s formula, 39
exponential function

for a complex variable, 42

first-order ODEs
differential form, 160
separable form, 160
standard form, 160

forcing function
in an ODE, 167

Gram-Schmidt orthogonalization,
59

Heaviside function
definition, 179

Helmholtz’s equation, 189
Hermitian adjoint

definition, 57

imaginary axis, 35
imaginary number, 34
inhomogeneous

in an ODE, 167
initial value problem, 160
inner product

definition, 151
Fourier series, 155

Klein-Gordon equation, 189
Kronecker Delta

definition, 177

Laplace’s equation, 188
Legendre polynomials

definiton, 175
Legendre’s equation

definition, 173
power series solution, 173

length
of abstract vectors, 151

linear ODEs with constant
coefficients

solution method,
homogeneous, 164

solution method,
inhomogeneous, 168

linear operator
definition, 156
derivatives as, 157
Hermitian operators as, 157
matrices as, 157

magnitude

of a complex number, 37
matrices, types of

anti-symmetric, 58
anti_Hermitian, 58
Hermitian, 58, 64
orthogonal, 60
Pauli, 65, 66
symmetric, 58
unitary, 59, 60, 64

momentum of center of mass
definition, 230

multiplication and division of
complex numbers

exponential form, 41
multiplication of complex numbers

rectangular form, 36
multiplicity

in matrix eigenvalues, 53

negative vector, 150
non-interacting particles

definition, 230
norm

of a complex number, 37
of abstract vectors, 151

normalized vector
definition, 55

null vector
definition, 150

orthogonal
for abstract vectors, 151
for functions, 155

outer product
definition, 47

partial differential equations
diffusion equation, 189
Helmholtz’s equation, 189
Klein-Gordon equation, 189
Laplace’s equation, 188
Poisson’s equation, 188
Schrödinger’s equation, 188
wave equation, 189

perpendicular
for abstract vectors, 151

phase
definition, 258

piecewise
definition, 179

Poisson’s equation, 188
position of center of mass

definition, 230
projection operator

definition, 61
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pure imaginary number, 34
pure real number, 34

quadratic formula
definition, 257
proof, 257

real axis, 35
real number, 34
recurrence relation

definiton, 174
for Legendre’s equation, 174

reduced mass
definition, 232

regular point of an ODE
definition, 176

regular singularity of an ODE
definition, 176

Rodrigues’ Formula
for Legendre polynomials, 199

scalar identity
in a vector space, 150

Schrödinger’s equation, 188
separation constants, 197
separation of variables

definition, 192
method, 192

separation of variables in PDEs

separation constants, 197
source

in an ODE, 167
span, 63
spectral theorem, 63
spherical harmonics

algebraic definition, 205
graphs, 206

standard basis, 55, 56
step function

definition, 179
Sturm-Liouville theory

introduction, 155
Sturm–Liouville theory, 197

theta function
definition, 179

torque
definition, 234

unimodular, 60

vector space
definition, 150
examples, 150

wave equation, 189
wave number

definition, 258
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